Advertisement

Journal of Comparative Physiology A

, Volume 199, Issue 8, pp 711–722 | Cite as

Group recruitment in a thermophilic desert ant, Ocymyrmex robustior

  • Stefan Sommer
  • Denise Weibel
  • Nicole Blaser
  • Anna Furrer
  • Nadine E. Wenzler
  • Wolfgang Rössler
  • Rüdiger WehnerEmail author
Original Paper

Abstract

Thermophilic desert ants—Cataglyphis, Ocymyrmex, and Melophorus species inhabiting the arid zones of the Palaearctic region, southern Africa and central Australia, respectively—are solitary foragers, which have been considered to lack any kind of chemical recruitment. Here we show that besides mainly employing the solitary mode of food retrieval Ocymyrmex robustior regularly exhibits group recruitment to food patches that cannot be exploited individually. Running at high speed to recruitment sites that may be more than 60 m apart from the nest a leading ant, the recruiter, is followed by a loose and often quite dispersed group of usually 2–7 recruits, which often overtake the leader, or may lose contact, fall back and return to the nest. As video recordings show the leader, while continually keeping her gaster in a downward position, intermittently touches the surface of the ground with the tip of the gaster most likely depositing a volatile pheromone signal. These recruitment events occur during the entire diurnal activity period of the Ocymyrmex foragers, that is, even at surface temperatures of more than 60 °C. They may provide promising experimental paradigms for studying the interplay of orientation by chemical signals and path integration as well as other visual guidance routines.

Keywords

Desert ants Recruitment Ocymyrmex Path integration Solitary foraging 

Notes

Acknowledgments

We thank Christine Gutzwiller and Sibylle Wehner for their cooperation during various stages of the experiments, Joh Henschel, Thomas Nørgaard, and the staff of the Gobabeb Training and Research Centre, Namibia, for infrastructural help in various ways, Bert Hölldobler for helpful comments on Myrmecocystus mimicus, Steffen Pielström for providing us with video sequences of the recruitment behaviour of Camponotus socius, and two reviewers for helpful comments. Financial support came from the Swiss National Science Foundation (Grant no. 31-61844.00 to RW) and the Deutsche Forschungsgemeinschaft (Grant no. 3675/1-1 and Grant no. SFB 554 A8 to RW and WR, respectively). The experiments comply with the current law of the country in which they were performed.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Amor F, Ortega P, Cerdá X, Boulay R (2010) Cooperative prey-retrieving in the ant Cataglyphis floricola: an unusual short-distance recruitment. Insectes Soc 57:91–94CrossRefGoogle Scholar
  2. Baker TC, Vickers NJ (1997) Pheromone-mediated flight in moths. In: Cardé RT, Minks AK (eds) Insect pheromone research. New directions. Chapman and Hall, New York, pp 248–264CrossRefGoogle Scholar
  3. Batschelet E (1981) Circular statistics in biology. Academic Press, LondonGoogle Scholar
  4. Bolek S, Wittlinger M, Wolf H (2012) What counts for ants? How return behaviour and food search of Cataglyphis ants are modified by variations in food quantity and experience. J Exp Biol 215:3218–3222PubMedCrossRefGoogle Scholar
  5. Cardé RT, Mafra-Neto A (1997) Mechanisms of flight of male moths to pheromone. In: Cardé RT, Minks AK (eds) Insect pheromone research. New directions. Chapman and Hall, New York, pp 275–290CrossRefGoogle Scholar
  6. Cardé RT, Willis MA (2008) Navigational strategies used by insects to find distant, wind-borne sources of odor. J Chem Ecol 34:854–866PubMedCrossRefGoogle Scholar
  7. Cerdá X, Retana J, Manzaneda A (1998) The role of competition by dominants and temperature in the foraging of subordinate species in Mediterranean ant communities. Oecologia 117:404–412CrossRefGoogle Scholar
  8. Cheng K, Narendra A, Sommer S, Wehner R (2009) Traveling in clutter: navigation in the central Australian desert ant Melophorus bagoti. Behav Processes 80:261–268PubMedCrossRefGoogle Scholar
  9. Christian KA, Morton SR (1992) Extreme thermophilia in a central Australian ant, Melophorus bagoti. Physiol Zool 65:885–905Google Scholar
  10. Clark PJ, Evans FC (1954) Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 35:445–453CrossRefGoogle Scholar
  11. Collett M, Collett TS, Wehner R (1999) Calibration of vector navigation in desert ants. Curr Biol 9:1031–1034PubMedCrossRefGoogle Scholar
  12. Graham P (2010) Insect navigation. In: Breed MD, Moore J (eds) Encyclopedia of animal behavior, vol 2. Academic Press, Oxford, pp 167–175CrossRefGoogle Scholar
  13. Harkness R, Wehner R (1977) Cataglyphis. Endeavour NS 1:115–121CrossRefGoogle Scholar
  14. Hölldobler B (1971) Recruitment behavior in Camponotus socius (Hym. Formicidae). Z vergl Physiol 75:123–142Google Scholar
  15. Hölldobler B (1981a) Foraging and spatiotemporal territories in the honey ant Myrmecocystus mimicus (Hymenoptera: Formicidae). Behav Ecol Sociobiol 9:301–314CrossRefGoogle Scholar
  16. Hölldobler B (1981b) Zur Evolution von Rekrutierungssignalen bei Ameisen. Nova Acta Leopoldina N.F 54:431–447Google Scholar
  17. Hölldobler B (1982) The cloacal gland, a new pheromone gland in ants. Naturwissenschaften 69:186–187CrossRefGoogle Scholar
  18. Hölldobler B (1984) Evolution of insect communication. Symp R Ent Soc 12:349–377Google Scholar
  19. Hölldobler B, Lumsden CJ (1980) Territorial strategies in ants. Science 210:732–739PubMedCrossRefGoogle Scholar
  20. Hölldobler B, Wilson EO (1990) The ants. The Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  21. Hölldobler B, Wilson EO (2009) The superorganism: the beauty, elegance and strangeness of insect societies. W. W. Norton & Company, New YorkGoogle Scholar
  22. Kneitz G (1964) Saisonales trageverhalten bei Formica polyctena Foerst. (Formicidae, Gen. Formica). Insect Soc 11:105–129CrossRefGoogle Scholar
  23. Kohl E, Hölldobler B, Bestmann HJ (2001) Trail and recruitment pheromones in Camponotus socius (Hymenoptera: Formicidae). Chemoecology 11:67–73CrossRefGoogle Scholar
  24. Kohl E, Hölldobler B, Bestmann HJ (2003) Trail pheromones and Dufour gland contents in three Camponotus species (C. castaneus, C. balzani, C. sericeiventris: Formicidae, Hymenoptera). Chemoecology 13:113–122CrossRefGoogle Scholar
  25. Lenoir A, Nowbahari E, Quérard L, Pondicq N, Delalande C (1990) Habitat exploitation and intercolonial relationships in the ant Cataglyphis cursor (Hymenoptera, Formicidae). Acta Oecolol 11:3–18Google Scholar
  26. Liefke C, Hölldobler B, Maschwitz U (2001) Recruitment behavior in the ant genus Polyrhachis (Hymenoptera, Formicidae). J Insect Behav 14:637–657CrossRefGoogle Scholar
  27. Marsh AC (1985) Microclimatic factors influencing foraging patterns and success of the thermophilic desert ant, Ocymyrmex barbiger. Insectes Soc 32:286–296CrossRefGoogle Scholar
  28. Marsh AC (1988) Activity patterns of some Namib Desert ants. J Arid Environ 14:61–73Google Scholar
  29. Mizuno K (2010) Environmental change and vegetation succession along an ephemeral river: the Kuiseb in the Namib. Afr Study Monogr Suppl 40:3–18Google Scholar
  30. Möglich M, Hölldobler B (1974) Social carrying behavior and division of labor during nest moving in ants. Psyche 81:219–236CrossRefGoogle Scholar
  31. Muser B, Sommer S, Wolf H, Wehner R (2005) Foraging ecology of the thermophilic Australian desert ant, Melophorus bagoti. Austr J Zool 53:301–311CrossRefGoogle Scholar
  32. Otto D (1958) Über die Arbeitsteilung im Staate von Formica rufa rufo-pratensis minor und ihrer verhaltensphysiologischen Grundlagen: ein Beitrag zur Biologie der Roten Waldameise. Wiss Abh Dtsch Akad Landwirtsch Wiss Berlin 30:1–169Google Scholar
  33. Ruano F, Tinaut A, Soler JJ (2000) High surface temperatures select for individual foraging in ants. Behav Ecol 11:396–404CrossRefGoogle Scholar
  34. Schachtschneider K, February EC (2010) The relationship between fog, floods, groundwater and tree growth along the lower Kuiseb River in the hyperarid Namib. J Arid Environ 74:1632–1637CrossRefGoogle Scholar
  35. Schmid-Hempel P (1983) Foraging ecology and colony structure of two sympatric species of desert ants Cataglyphis bicolor and Cataglyphis albicans. Dissertation, University of ZürichGoogle Scholar
  36. Schmid-Hempel P (1984) Individually different foraging methods in the desert ant Cataglyphis bicolor (Hymenoptera, Formicidae). Behav Ecol Sociobiol 14:263–271CrossRefGoogle Scholar
  37. Schultheiss P, Cheng K (2012) Finding food: outbound searching behavior in the Australian desert ant Melophorus bagoti. Behav Ecol 24:128–135CrossRefGoogle Scholar
  38. Schultheiss P, Schwarz S, Cheng K, Wehner R (2013) Foraging ecology of an Australian salt-pan desert ant (genus Melophorus). Austr J Zool 60:311–319CrossRefGoogle Scholar
  39. Szlep R (1973) Motor display as a means of recruitment to food sources in ants. Proc Congr Int Union Stud Soc Ins 7:383–384Google Scholar
  40. Theron GK, van Rooyen N, van Rooyen MW (1980) Vegetation of the lower Kuiseb River. Modoqua 11:327–345Google Scholar
  41. Tinaut A (1993) Cataglyphis floricola n. sp. new species for the genus Cataglyphis Förster, 1850 (Hymenoptera, Formicidae) in the Iberian Peninsula. Mitt Schweiz Entomol Ges 66:123–134Google Scholar
  42. Tobin TR (1981) Pheromone orientation: role of internal control mechanisms. Science 214:1147–1149PubMedCrossRefGoogle Scholar
  43. Topoff H, Boshes N, Trakimas W (1972) A comparison of trail following between callow and adult workers of the army ant [Neivamyrmex nigrescens (Formicidae: Dorylinae)]. Anim Behav 20:361–366CrossRefGoogle Scholar
  44. Traniello JFA (1989) Foraging strategies of ants. Ann Rev Entomol 34:191–210CrossRefGoogle Scholar
  45. Vander Meer RK (1986) The trail pheromone complex of Solenopsis invicta and Solenopsis richteri. In: Lofgren CS, Vander Meer RK (eds) Fire ants and leaf-cutting ants: biology and management. Westview Press, Boulder, pp 201–210Google Scholar
  46. Wehner R (1987) Spatial organization of foraging behaviour in individually searching desert ants, Cataglyphis (Sahara Desert) and Ocymyrmex (Namib Desert). In: Pasteels JM, Deneubourg J-L (eds) From individual to collective behaviour in social insects. Birkhäuser, Basel, pp 15–42Google Scholar
  47. Wehner R (2012) Wüstennavigatoren en miniature. Biol unserer Zeit 42:364–373CrossRefGoogle Scholar
  48. Wehner R, Wehner S (2011) Parallel evolution of thermophilia: daily and seasonal foraging patterns of heat-adapted desert ants: Cataglyphis and Ocymyrmex species. Physiol Entomol 36:271–281CrossRefGoogle Scholar
  49. Wehner R, Herrling PL, Brunnert A, Klein R (1972) Periphere adaptation und zentralnervöse Umstimmung im optischen System von Cataglyphis bicolor (Formicidae, Hymsnoptera). Rev Suisse Zool 77:239–255Google Scholar
  50. Wehner R, Harkness RD, Schmid-Hempel P (1983) Foraging strategies in individually searching ants, Cataglyphis bicolor (Hymenoptera: Formicidae). Akademie der Wissenschaften und der Literatur and Fischer Verlag, Mainz and StuttgartGoogle Scholar
  51. Wehner R, Marsh AC, Wehner S (1992) Desert ants on a thermal tightrope. Nature 357:586–587CrossRefGoogle Scholar
  52. Wehner R, Gallizzi K, Frei C, Vesely M (2002) Calibration processes in desert ant navigation: vector courses and systematic search. J Comp Physiol A 188:683–693CrossRefGoogle Scholar
  53. Wehner R, Meier C, Zollikofer C (2004) The ontogeny of foraging behaviour in desert ants, Cataglyphis bicolor. Ecol Entomol 29:240–250CrossRefGoogle Scholar
  54. Willis MA, Avondet JL (2005) Odor-mediated orientation in walking male cockroaches Periplaneta americana, and the effects of odor plumes of different structure. J Exp Biol 208:721–735PubMedCrossRefGoogle Scholar
  55. Willis MA, Avondet JL, Zheng E (2011) The role of vision in odor-plume tracking by walking and flying insects. J Exp Biol 214:4121–4132PubMedCrossRefGoogle Scholar
  56. Wilson EO (1962) Chemical communication among workers of the fire ant Solenopsis saevissima (Fr. Smith). 1. The organization of mass-foraging. 2. An information analysis of the odour trail. 3. The experimental induction of social responses. Anim Behav 10:134–164CrossRefGoogle Scholar
  57. Zollikofer CPE, Wehner R, Fukushi T (1995) Optical scaling in conspecific Cataglyphis ants. J Exp Biol 198:1637–1646PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stefan Sommer
    • 1
  • Denise Weibel
    • 2
  • Nicole Blaser
    • 3
  • Anna Furrer
    • 4
  • Nadine E. Wenzler
    • 5
  • Wolfgang Rössler
    • 5
  • Rüdiger Wehner
    • 5
    • 6
    Email author
  1. 1.Institute of Evolutionary Biology and Environmental StudiesUniversity of ZürichZurichSwitzerland
  2. 2.EAWAG, Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
  3. 3.Institute of AnatomyUniversity of ZürichZurichSwitzerland
  4. 4.Kantonsschule OltenOltenSwitzerland
  5. 5.BiocenterUniversity of WürzburgWürzburgGermany
  6. 6.Brain Research InstituteUniversity of ZürichZurichSwitzerland

Personalised recommendations