Journal of Comparative Physiology A

, Volume 199, Issue 8, pp 681–691 | Cite as

Social signals increase monoamine levels in the tegmentum of juvenile Mexican spadefoot toads (Spea multiplicata)

  • Verónica G. Rodriguez Moncalvo
  • Sabrina S. Burmeister
  • Karin S. Pfennig
Original Paper


Monoamines are important neuromodulators that respond to social cues and that can, in turn, modify social responses. Yet we know very little about the ontogeny of monoaminergic systems and whether they contribute to the development of social behavior. Anurans are an excellent model for studying the development of social behavior because one of its primary components, phonotaxis, is expressed early in life. To examine the effect of social signals on monoamines early in ontogeny, we presented juvenile Mexican spadefoot toads (Spea multiplicata) with a male mating call or no sound and measured norepinephrine, epinephrine, dopamine, serotonin, and a serotonin metabolite, across the brain using high-pressure liquid chromatography. Our results demonstrate that adult-like monoaminergic systems are in place shortly after metamorphosis. Perhaps more interestingly, we found that mating calls increased the level of monoamines in the juvenile tegmentum, a midbrain region involved in sensory-motor integration and that contributes to brain arousal and attention. We saw no such increase in the auditory midbrain or in forebrain regions. We suggest that changes in monoamine levels in the juvenile tegmentum may reflect the effects of social signals on arousal state and could contribute to context-dependent modulation of social behavior.


Monoamines Neuromodulator Anuran Acoustic communication HPLC 



5-Hydroxyindoleacetic acid


5-Hydroxytryptamine (serotonin)

A-D di

Anterior-dorsal diencephalon




3,4-Dihydroxyphenylacetic acid




Homovanillic acid









P-D di

Posterior-dorsal diencephalon


Preoptic area

P-V di

Posterior-ventral diencephalon


Suprachiasmatic nucleus






Torus semicircularis



We thank Keith W. Sockman for use of his HPLC system and S. B. Southerland for his expertise in measuring monoamines. This work was supported by a New Innovator Award from the Office of the Director, National Institutes of Health (1 DP2 OD004436-01) to K. S. Pfennig. The University of North Carolina Institutional Animal Care and Use Committee approved all animal procedures.


  1. Baugh AT, Ryan MJ (2010) The development of sexual behavior in túngara frogs (Physalaemus pustulosus). J Comp Psychol 124(1):66–80. doi:10.1037/a0017227 PubMedCrossRefGoogle Scholar
  2. Baugh AT, Hoke KL, Ryan MJ (2012) Development of communication behaviour: receiver ontogeny in Túngara frogs and a prospectus for a behavioural evolutionary development. Sci World J 2012:680632. doi:10.1100/2012/680632 CrossRefGoogle Scholar
  3. Bernal XE, Rand AS, Ryan MJ (2009) Task differences confound sex differences in receiver permissiveness in túngara frogs. Proc R Soc B 276(1660):1323–1329. doi:10.1098/rspb.2008.0935 PubMedCrossRefGoogle Scholar
  4. Berridge CW (2008) Noradrenergic modulation of arousal. Brain Res Rev 58(1):1–17. doi:10.1016/j.brainresrev.2007.10.013 PubMedCrossRefGoogle Scholar
  5. Bharati IS, Goodson JL (2006) Fos responses of dopamine neurons to sociosexual stimuli in male zebra finches. Neuroscience 143:661–670PubMedCrossRefGoogle Scholar
  6. Boatright-Horowitz SS, Simmons AM (1995) Postmetamorphic changes in auditory sensitivity of the bullfrog midbrain. J Comp Physiol A 177(5):577–590PubMedCrossRefGoogle Scholar
  7. Boatright-Horowitz SS, Simmons AM (1997) Transient “deafness” accompanies auditory development during metamorphosis from tadpole to frog. Proc Nat Acad Sci USA 94(26):14877–14882PubMedCrossRefGoogle Scholar
  8. Carlsson A (1959) The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol Rev 11(2, Part 2):490–493PubMedGoogle Scholar
  9. Chakraborty M, Burmeister SS (2009) Estradiol induces sexual behavior in female túngara frogs. Horm Behav 55(1):106–112. doi:10.1016/j.yhbeh.2008.09.001 PubMedCrossRefGoogle Scholar
  10. Chakraborty M, Mangiamele LA, Burmeister SS (2010) Neural activity patterns in response to interspecific and intraspecific variation in mating calls in the túngara frog. PLoS One 5(9):e12898. doi:10.1371/journal.pone.0012898 PubMedCrossRefGoogle Scholar
  11. Cooney MM, Conaway CH, Mefford IN (1985) Epinephrine, norepinephrine and dopamine concentrations in amphibian brain. Comp Biochem Physiol C 82(2):395–397PubMedCrossRefGoogle Scholar
  12. Cransac H, Cottet-Emard JM, Hellström S, Peyrin L (1998) Specific sound-induced noradrenergic and serotonergic activation in central auditory structures. Hear Res 118:151–156PubMedCrossRefGoogle Scholar
  13. Endepols H, Walkowiak W, Luksch H (2000) Chemoarchitecture of the anuran auditory midbrain. Brain Res Rev 33(2–3):179–198PubMedCrossRefGoogle Scholar
  14. Endepols H, Feng AS, Gerhardt HC, Schul J, Walkowiak W (2003) Roles of the auditory midbrain and thalamus in selective phonotaxis in female gray treefrogs (Hyla versicolor). Behav Brain Res 145(1–2):63–77PubMedCrossRefGoogle Scholar
  15. Endepols H, Roden K, Walkowiak W (2005) Hodological characterization of the septum in anuran amphibians: II. Efferent connections. J Comp Neurol 483(4):437–457PubMedCrossRefGoogle Scholar
  16. Endepols H, Muhlenbrock-Lenter S, Roth G, Walkowiak W (2006) The septal complex of the fire-bellied toad Bombina orientalis: chemoarchitecture. J Chem Neuroanat 31(1):59–76. doi:10.1016/j.jchemneu.2005.09.001 PubMedCrossRefGoogle Scholar
  17. Feng AS, Lin WY (1991) Differential innervation patterns of three divisions of frog auditory midbrain (torus semicircularis). J Comp Neurol 306(4):613–630PubMedCrossRefGoogle Scholar
  18. Forester DC (1975) Laboratory evidence for potential gene flow between two species of spadefoot toads, Scaphiopus bombifrons and Scaphiopus hammondii. Herpetologica 31(1975):282–286Google Scholar
  19. Fuller RW, Hemrick-Luecke SK (1983) Species differences in epinephrine concentration and norepinephrine N-methyltransferase activity in hypothalamus and brain stem. Comp Biochem Physiol C 74(1):47–49PubMedCrossRefGoogle Scholar
  20. Gonzalez A, Smeets WJ (1991) Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the brain of two amphibians, the anuran Rana ridibunda and the urodele Pleurodeles waltlii. J Comp Neurol 303(3):457–477. doi:10.1002/cne.903030311 PubMedCrossRefGoogle Scholar
  21. Gonzalez A, Smeets WJ (1993) Noradrenaline in the brain of the South African clawed frog Xenopus laevis: a study with antibodies against noradrenaline and dopamine-β-hydroxylase. J Comp Neurol 331:363–374PubMedCrossRefGoogle Scholar
  22. Gonzalez A, Smeets WJ (1995) Noradrenergic and adrenergic systems in the brain of the urodele amphibian, Pleurodeles waltlii, as revealed by immunohistochemical methods. Cell Tissue Res 279(3):619–627PubMedCrossRefGoogle Scholar
  23. Gunne LM (1962) Relative adrenaline content in brain tissue. Acta Physiol Scand 56:324–333PubMedCrossRefGoogle Scholar
  24. Hall JC, Feng AS (1987) Evidence for parallel processing in the frog’s auditory thalamus. J Comp Neurol 258(3):407–419. doi:10.1002/cne.902580309 PubMedCrossRefGoogle Scholar
  25. Hall IC, Rebec GV, Hurley LM (2010) Serotonin in the inferior colliculus fluctuates with behavioral state and environmental stimuli. J Exp Biol 213(Pt 7):1009–1017. doi:10.1242/jeb.035956 PubMedCrossRefGoogle Scholar
  26. Horowitz SS, Simmons AM (2010) Development of tectal connectivity across metamorphosis in the bullfrog (Rana catesbeiana). Brain Behav Evol 76(3–4):226–247PubMedCrossRefGoogle Scholar
  27. Horowitz SS, Chapman JA, Simmons AM (2007) Plasticity of auditory medullary-midbrain connectivity across metamorphic development in the bullfrog, Rana catesbeiana. Brain Behav Evol 69(1):1–19. doi:10.1159/000095027 PubMedCrossRefGoogle Scholar
  28. Hurley LM, Hall IC (2011) Context-dependent modulation of auditory processing by serotonin. Hear Res 279(1–2):74–84. doi:10.1016/j.heares.2010.12.015 PubMedCrossRefGoogle Scholar
  29. Juorio AV (1973) The distribution of catecholamines in the hypothalamus and other brain areas of some lower vertebrates. J Neurochem 20(2):641–645PubMedCrossRefGoogle Scholar
  30. Kumaresan V, Kang C, Simmons AM (1998) Development and differentiation of the anuran auditory brainstem during metamorphosis: an acetylcholinesterase histochemical study. Brain Behav Evol 52(3):111–125PubMedCrossRefGoogle Scholar
  31. Lazar G, Kozicz T (1990) Morphology of neurons and axon terminals associated with descending and ascending pathways of the lateral forebrain bundle in Rana esculenta. Cell Tissue Res 260(3):535–548PubMedCrossRefGoogle Scholar
  32. Levitt P, Moore RY (1979) Development of the noradrenergic innervation of neocortex. Brain Res 162(2):243–259PubMedCrossRefGoogle Scholar
  33. Lopez JM, Morona R, Gonzalez A (2010) Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system. J Chem Neuroanat 40(4):325–338. doi:10.1016/j.jchemneu.2010.09.004 PubMedCrossRefGoogle Scholar
  34. Lowry CA, Renner KJ, Moore FL (1996) Catecholamines and indoleamines in the central nervous system of a urodele amphibian: a microdissection study with emphasis on the distribution of epinephrine. Brain Behav Evol 48(2):70–93PubMedCrossRefGoogle Scholar
  35. Luksch H, Walkowiak W (1998) Morphology and axonal projection patterns of auditory neurons in the midbrain of the painted frog, Discoglossus pictus. Hear Res 122(1–2):1–17PubMedCrossRefGoogle Scholar
  36. Maier S, Walkowiak W, Luksch H, Endepols H (2010) An indirect basal ganglia pathway in anuran amphibians? J Chem Neuroanat 40(1):21–35. doi:10.1016/j.jchemneu.2010.02.004 PubMedCrossRefGoogle Scholar
  37. Marin O, Gonzalez A, Smeets WJ (1997a) Anatomical substrate of amphibian basal ganglia involvement in visuomotor behaviour. Eur J Neurosci 9(10):2100–2109PubMedCrossRefGoogle Scholar
  38. Marin O, Gonzalez A, Smeets WJ (1997b) Basal ganglia organization in amphibians: efferent connections of the striatum and the nucleus accumbens. J Comp Neurol 380(1):23–50PubMedCrossRefGoogle Scholar
  39. Marin O, Smeets WJ, Munoz M, Sanchez-Camacho C, Pena JJ, Lopez JM, Gonzalez A (1999) Cholinergic and catecholaminergic neurons relay striatal information to the optic tectum in amphibians. Eur J Morphol 37(2–3):155–159PubMedGoogle Scholar
  40. Mefford IN, Foutz A, Noyce N, Jurik SM, Handen C, Dement WC, Barchas JD (1982) Distribution of norepinephrine, epinephrine, dopamine, serotonin, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindole-3-acetic acid in dog brain. Brain Res 236(2):339–349PubMedCrossRefGoogle Scholar
  41. Muhlenbrock-Lenter S, Endepols H, Roth G, Walkowiak W (2005) Immunohistological characterization of striatal and amygdalar structures in the telencephalon of the fire-bellied toad Bombina orientalis. Neuroscience 134(2):705–719. doi:10.1016/j.neuroscience.2005.04.017 PubMedCrossRefGoogle Scholar
  42. Neary TJ (1990) The pallium of anuran amphibians. In: Jones EG, Peters A (eds) Cerebral cortex: comparative structure and evolution of cerebral cortex, Part 1, vol 8A. Plenum Press, New York, pp 107–138CrossRefGoogle Scholar
  43. Neary TJ, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neurol 213(3):262–278PubMedCrossRefGoogle Scholar
  44. Niu X, Canlon B (2002) Activation of tyrosine hydroxylase in the lateral efferent terminals by sound conditioning. Hear Res 174:124–132PubMedCrossRefGoogle Scholar
  45. O’Connell LA, Hofmann HA (2011a) Genes, hormones, and circuits: an integrative approach to study the evolution of social behavior. Front Neuroendocrinol 32(3):320–335. doi:10.1016/j.yfrne.2010.12.004 PubMedCrossRefGoogle Scholar
  46. O’Connell LA, Hofmann HA (2011b) The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 519(18):3599–3639. doi:10.1002/cne.22735 PubMedCrossRefGoogle Scholar
  47. O’Connell LA, Matthews BJ, Ryan MJ, Hofmann HA (2010) Characterization of the dopamine system in the brain of the túngara frog, Physalaemus pustulosus. Brain Behav Evol 76(3–4):211–225. doi:10.1159/000321715 PubMedCrossRefGoogle Scholar
  48. Pfennig KS (2000) Female spadefoot toads compromise on mate quality to ensure conspecific matings. Behav Ecol 11:220–227CrossRefGoogle Scholar
  49. Pfennig KS (2007) Facultative mate choice drives adaptive hybridization. Science 318(5852):965–967. doi:10.1126/science.1146035 PubMedCrossRefGoogle Scholar
  50. Pfennig KS, Stewart AB (2011) Asymmetric reproductive character displacement in male aggregation behaviour. Proc R Soc B 278(1716):2348–2354. doi:10.1098/rspb.2010.2196 PubMedCrossRefGoogle Scholar
  51. Pfennig KS, Rapa K, McNatt R (2000) Evolution of male mating behaviour: male spadefoot toads preferentially associate with conspecific males. Behav Ecol Sociobiol 48:69–74CrossRefGoogle Scholar
  52. Potter HD (1965) Mesencephalic auditory region of the bullfrog. J Neurophysiol 28(6):1132–1154PubMedGoogle Scholar
  53. Salvante KG, Racke DM, Campbell CR, Sockman KW (2010) Plasticity in singing effort and its relationship with monoamine metabolism in the songbird telencephalon. Dev Neurobiol 70(1):41–57. doi:10.1002/dneu.20752 PubMedGoogle Scholar
  54. Sanchez-Camacho C, Marin O, Smeets WJ, Ten Donkelaar HJ, Gonzalez A (2001) Descending supraspinal pathways in amphibians. II. Distribution and origin of the catecholaminergic innervation of the spinal cord. J Comp Neurol 434(2):209–232PubMedCrossRefGoogle Scholar
  55. Sanchez-Camacho C, Pena JJ, Gonzalez A (2003) Catecholaminergic innervation of the septum in the frog: a combined immunohistochemical and tract-tracing study. J Comp Neurol 455(3):310–323. doi:10.1002/cne.10500 PubMedCrossRefGoogle Scholar
  56. Schmidt RS (1990) Releasing (unclasping) in male American toads: a neural substrate in the lateral subtoral tegmentum. Brain Behav Evol 36(5):307–314PubMedCrossRefGoogle Scholar
  57. Segura ET, Biscardi AM (1967) Changes in brain epinephrine and norepinephrine induced by afferent electrical stimulation in the isolated toad head. Life Sci 6(15):1599–1603PubMedCrossRefGoogle Scholar
  58. Smeets WJ, Gonzalez A (2000) Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. Brain Res Rev 33(2–3):308–379PubMedCrossRefGoogle Scholar
  59. Sockman KW, Salvante KG (2008) The integration of song environment by catecholaminergic systems innervating the auditory telencephalon of adult female European starlings. Dev Neurobiol 68:656–668PubMedCrossRefGoogle Scholar
  60. Takeda N (1997) The metabolism of biogenic monoamines during embryogenesis and metamorphosis in two anuran species. Gen Comp Endocrinol 106(3):361–373. doi:10.1006/gcen.1997.6885 PubMedCrossRefGoogle Scholar
  61. Ueda S, Nojyo Y, Sano Y (1984) Immunohistochemical demonstration of the serotonin neuron system in the central nervous system of the bullfrog, Rana catesbeiana. Anat Embryol 169:219–229PubMedCrossRefGoogle Scholar
  62. Vesselkin NP, Ermakova TV, Kenigfest NB, Goikovic M (1980) The striatal connections in frog Rana temporaria: an HRP study. J Hirnforsch 21(4):381–392PubMedGoogle Scholar
  63. Vogt M (1954) The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J Physiol 123(3):451–481PubMedGoogle Scholar
  64. Walkowiak W, Luksch H (1994) Sensory motor interfacing in acoustic behavior of anurans. Am Zool 34:685–695Google Scholar
  65. Walkowiak W, Berlinger M, Schul J, Gerhardt HC (1999) Significance of forebrain structures in acoustically guided behavior in anurans. Eur J Morphol 37(2–3):177–181PubMedGoogle Scholar
  66. Wilczynski W, Endepols H (2007) Central auditory pathways in anuran amphibians: the anatomical basis of hearing and sound communication. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer, New York, pp 221–249Google Scholar
  67. Wilczynski W, Northcutt RG (1983) Connections of the bullfrog striatum: efferent projections. J Comp Neurol 214(3):333–343. doi:10.1002/cne.902140310 PubMedCrossRefGoogle Scholar
  68. Wu GY, Wang SR (2007) Postsynaptic potentials and axonal projections of tegmental neurons responding to electrical stimulation of the toad striatum. Neurosci Let 429(2–3):111–114. doi:10.1016/j.neulet.2007.09.071 CrossRefGoogle Scholar
  69. Yoshida M, Nagatsu I, Kondo Y, Karasawa N, Ohno T, Spatz M, Nagatsu T (1983) Immunohistochemical localization of the neurons containing catecholamine-synthesizing enzymes and serotonin in the brain of the bullfrog (Rana catesbeiana). Acta Histochem Cytochem 16:245–258CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Verónica G. Rodriguez Moncalvo
    • 1
    • 3
  • Sabrina S. Burmeister
    • 1
    • 2
  • Karin S. Pfennig
    • 1
  1. 1.Department of BiologyUniversity of North Carolina at Chapel HillChapel HillUSA
  2. 2.Curriculum in NeurobiologyUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.Department of Biomedical SciencesUniversity of GuelphGuelphCanada

Personalised recommendations