Journal of Comparative Physiology A

, Volume 199, Issue 5, pp 341–351 | Cite as

Neurons innervating the lamina in the butterfly, Papilio xuthus

  • Yoshitaka Hamanaka
  • Hiromichi Shibasaki
  • Michiyo Kinoshita
  • Kentaro ArikawaEmail author
Original Paper


The butterfly Papilio xuthus has compound eyes with three types of ommatidia. Each type houses nine spectrally heterogeneous photoreceptors (R1–R9) that are divided into six spectral classes: ultraviolet, violet, blue, green, red, and broad-band. Analysis of color discrimination has shown that P. xuthus uses the ultraviolet, blue, green, and red receptors for foraging. The ultraviolet and blue receptors are long visual fibers terminating in the medulla, whereas the green and red receptors are short visual fibers terminating in the lamina. This suggests that processing of wavelength information begins in the lamina in P. xuthus, unlike in flies. To establish the anatomical basis of color discrimination mechanisms, we examined neurons innervating the lamina by injecting Neurobiotin into this neuropil. We found that in addition to photoreceptors and lamina monopolar cells, three distinct groups of cells project fibers into the lamina. Their cell bodies are located (1) at the anterior rim of the medulla, (2) between the proximal surface of the medulla and lobula plate, and (3) in the medulla cell body rind. Neurobiotin injection also labeled distinct terminals in medulla layers 1, 2, 3, 4 and 5. Terminals in layer 4 belong to the long visual fibers (R1, 2 and 9), while arbors in layers 1, 2 and 3 probably correspond to terminals of three subtypes of lamina monopolar cells, respectively. Immunocytochemistry coupled with Neurobiotin injection revealed their transmitter candidates; neurons in (1) and a subset of neurons in (2) are immunoreactive to anti-serotonin and anti-γ-aminobutyric acid, respectively.


Butterfly Color vision GABA Neurobiotin injection Serotonin 



5-Hydroxytryptamine (serotonin)


γ-Aminobutyric acid


Lamina monopolar cell


Long visual fiber


Short visual fiber



We thank Dr. Uwe Homberg and Dr. Finlay Stewart for critically reading the manuscript. This work was supported in part by the JSPS Grants-in-Aid for Scientific Research No. 21247009 to KA, No. 24570084 to MK, the MAFF (Ministry of Agriculture, Forestry and Fisheries of Japan) grant (Elucidation of biological mechanisms of photoresponse and development of advanced technologies utilizing light) No. INSECT-1101 to KA. All experiments were conducted according to the MEXT (Ministry of Education, Culture, Sports, Science and Technology of Japan) guidelines for proper conduct of animal experiments and related activities in academic research institutions.


  1. Arikawa K (2003) Spectral organization of the eye of a butterfly, Papilio. J Comp Physiol A 189:791–800CrossRefGoogle Scholar
  2. Arikawa K, Mizuno S, Kinoshita M, Stavenga DG (2003) Coexpression of two visual pigments in a photoreceptor causes an abnormally broad spectral sensitivity in the eye of a butterfly, Papilio xuthus. J Neurosci 23:4527–4532PubMedGoogle Scholar
  3. Boschek CB (1971) On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z Zellforsch 118:369–409PubMedCrossRefGoogle Scholar
  4. Datum K-H, Weiler R, Zettler F (1986) Immunocytochemical demonstration of γ-amino butyric acid and glutamic acid decarboxylase in R7 photoreceptors and C2 centrifugal fibres in the blowfly visual system. J Comp Physiol A 159:241–249CrossRefGoogle Scholar
  5. Fei H, Chow DM, Chen A, Romero-Calderon R, Ong WS, Ackerson LC, Maidment NT, Simpson JH, Frye MA, Krantz DE (2010) Mutation of the Drosophila vesicular GABA transporter disrupts visual figure detection. J Exp Biol 213:1717–1730PubMedCrossRefGoogle Scholar
  6. Fischbach K-F, Dittrich APM (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475CrossRefGoogle Scholar
  7. Friedrich M, Wood EJ, Wu M (2011) Developmental evolution of the insect retina: insights from standardized numbering of homologous photoreceptors. J Exp Zool B Mol Dev Evol 316:484–499PubMedCrossRefGoogle Scholar
  8. Füller H, Eckert M, Blechschmidt K (1989) Distribution of GABA-like immunoreactive neurons in the optic lobes of Periplaneta americana. Cell Tissue Res 255:225–233CrossRefGoogle Scholar
  9. Hamanaka Y, Meinertzhagen IA (2010) Immunocytochemical localization of synaptic proteins to photoreceptor synapses of Drosophila melanogaster. J Comp Neurol 518:1133–1155PubMedCrossRefGoogle Scholar
  10. Hamanaka Y, Kinoshita M, Homberg U, Arikawa K (2012) Immunocytochemical localization of amines and GABA in the optic lobe of the butterfly, Papilio xuthus. PloS ONE 7:e41109PubMedCrossRefGoogle Scholar
  11. Hardie RC (1987) Is histamine a neurotransmitter in insect photoreceptors? J Comp Physiol A 161:201–213PubMedCrossRefGoogle Scholar
  12. Homberg U (1994) Distribution of neurotransmitters in the insect brain. In: Rathmayer W (ed) Progress in zoology, vol 40. Fischer, Stuttgart, pp 1–88Google Scholar
  13. Homberg U, Hildebrand JG (1989) Serotonin immunoreactivity in the optic lobes of the sphinx moth Manduca sexta and colocalization with FMRFamide and SCPB immunoreactivity. J Comp Neurol 288:243–253PubMedCrossRefGoogle Scholar
  14. Homberg U, Kingan TG, Hildebrand JG (1987) Immunocytochemistry of GABA in the brain and suboesophageal ganglion of Manduca sexta. Cell Tissue Res 248:1–24PubMedCrossRefGoogle Scholar
  15. Kinoshita M, Kurihara D, Tsutaya A, Arikawa K (2006) Blue and double-peaked green receptors depend on ommatidial type in the eye of the Japanese yellow swallowtail Papilio xuthus. Zool Sci 23:199–204PubMedCrossRefGoogle Scholar
  16. Kolodziejczyk A, Sun X, Meinertzhagen IA, Nässel DR (2008) Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system. PLoS ONE 3:e2110PubMedCrossRefGoogle Scholar
  17. Koshitaka H, Kinoshita M, Vorobyev M, Arikawa K (2008) Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc R Soc Lond B 275:947–954CrossRefGoogle Scholar
  18. Leitinger G, Pabst MA, Kral K (1999) Serotonin-immunoreactive neurones in the visual system of the praying mantis: an immunohistochemical, confocal laser scanning and electron microscopic study. Brain Res 823:11–23PubMedCrossRefGoogle Scholar
  19. Meinertzhagen IA, O’Neil SD (1991) Synaptic organization of columnar elements in the lamina of the wild type Drosophila melanogaster. J Comp Neurol 305:232–263PubMedCrossRefGoogle Scholar
  20. Meyer EP, Matute C, Streit P, Nässel DR (1986) Insect optic lobe neurons identifiable with monoclonal antibodies to GABA. Histochemistry 84:207–216PubMedCrossRefGoogle Scholar
  21. Morante J, Desplan C (2004) Building a projection map for photoreceptor neurons in the Drosophila optic lobes. Semin Cell Dev Biol 15:137–143PubMedCrossRefGoogle Scholar
  22. Nässel DR (1988) Serotonin and serotonin-immunoreactive neurons in the nervous system of insects. Prog Neurobiol 30:1–85PubMedCrossRefGoogle Scholar
  23. Nässel DR (1991) Neurotransmitters and neuromodulators in the insect visual system. Prog Neurobiol 37:179–254PubMedCrossRefGoogle Scholar
  24. Otsuna H, Ito K (2006) Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. J Comp Neurol 497:928–958PubMedCrossRefGoogle Scholar
  25. Raghu SV, Borst A (2011) Candidate glutamatergic neurons in the visual system of Drosophila. PLoS ONE 6:e19472PubMedCrossRefGoogle Scholar
  26. Ribi WA (1987) Anatomical identification of spectral receptor types in the retina and lamina of the Australian orchard butterfly, Papilio aegeus aegeus D. Cell Tissue Res 247:393–407CrossRefGoogle Scholar
  27. Sattelle DB (1990) GABA receptors of insects. Adv Insect Physiol 22:1–113CrossRefGoogle Scholar
  28. Sinakevitch I, Douglass JK, Schultz G, Losel R, Strausfeld NJ (2003) Conserved and convergent organization in the optic lobes of insects and isopods, with reference to other crustacean taxa. J Comp Neurol 467:150–172PubMedCrossRefGoogle Scholar
  29. Strausfeld NJ (1970) Golgi studies on insects Part II. The optic lobes of Diptera. Phil Trans R Soc Lond B 258:135–223CrossRefGoogle Scholar
  30. Strausfeld NJ (1971) The organization of the insect visual system (Light microscopy). Z Zellforsch 121:377–441CrossRefGoogle Scholar
  31. Strausfeld NJ (1976) Atlas of an insect brain. Springer, BerlinCrossRefGoogle Scholar
  32. Strausfeld NJ, Blest AD (1970) Golgi studies on insects. Part I. The optic lobes of Lepidoptera. Phil Trans R Soc Lond B 258:81–134CrossRefGoogle Scholar
  33. Takemura SY, Arikawa K (2006) Ommatidial type-specific interphotoreceptor connections in the lamina of the swallowtail butterfly, Papilio xuthus. J Comp Neurol 494:663–672PubMedCrossRefGoogle Scholar
  34. Takemura S, Kinoshita M, Arikawa K (2005) Photoreceptor projection reveals heterogeneity of lamina cartridges in the visual system of the Japanese yellow swallowtail butterfly, Papilio xuthus. J Comp Neurol 483:341–350PubMedCrossRefGoogle Scholar
  35. Takemura SY, Lu Z, Meinertzhagen IA (2008) Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J Comp Neurol 509:493–513PubMedCrossRefGoogle Scholar
  36. Trujillo-Cenóz O (1985) The eye: development, structure and neural connections. In: Kirkuk GA, Gilbert LI (eds) Comprehensive insect physiology biochemistry and pharmacology. Pergamon Press, Oxford, pp 171–223Google Scholar
  37. Wakakuwa M, Stavenga DG, Arikawa K (2007) Spectral organization of ommatidia in flower-visiting insects. Photochem Photobiol 83:27–34PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yoshitaka Hamanaka
    • 1
  • Hiromichi Shibasaki
    • 1
  • Michiyo Kinoshita
    • 1
  • Kentaro Arikawa
    • 1
    Email author
  1. 1.Laboratory of NeuroethologySokendai-Hayama (The Graduate University for Advanced Studies)HayamaJapan

Personalised recommendations