Journal of Comparative Physiology A

, Volume 199, Issue 1, pp 17–23 | Cite as

Dung beetles ignore landmarks for straight-line orientation

  • Marie DackeEmail author
  • Marcus Byrne
  • Jochen Smolka
  • Eric Warrant
  • Emily Baird
Original Paper


Upon locating a suitable dung pile, ball-rolling dung beetles shape a piece of dung into a ball and roll it away in a straight line. This guarantees that they will not return to the dung pile, where they risk having their ball stolen by other beetles. Dung beetles are known to use celestial compass cues such as the sun, the moon and the pattern of polarised light formed around these light sources to roll their balls of dung along straight paths. Here, we investigate whether terrestrial landmarks have any influence on straight-line orientation in dung beetles. We find that the removal or re-arrangement of landmarks has no effect on the beetle’s orientation precision. Celestial compass cues dominate straight-line orientation in dung beetles so strongly that, under heavily overcast conditions or when prevented from seeing the sky, the beetles can no longer orient along straight paths. To our knowledge, this is the only animal with a visual compass system that ignores the extra orientation precision that landmarks can offer.


Dung beetle Scarabaeidae Scarabaeinae Landmark Orientation 



The authors would like to thank Ted and Winnie Harvey for their assistance at the field site. We also thank Martin Kohler for help with the illustrations. The experiments were carried out according to the current laws on animal experimentation in Sweden.


  1. Baird E, Byrne M, Scholtz CH, Warrant EJ, Dacke M (2010) Bearing selection in ball-rolling dung beetles: is it constant? J Comp Physiol A 196:801–806. doi: 10.1007/s00359-010-0559-8 CrossRefGoogle Scholar
  2. Bouguet J-Y (1999) Visual methods for three-dimensional modelling. PhD Thesis. California Institute of Technology, Pasadena, CA, USAGoogle Scholar
  3. Byrne M, Dacke M, Nordström P, Scholtz CH, Warrant EJ (2003) Visual cues used by ball-rolling dung beetles for orientation. J Comp Physiol 189:411–418. doi: 10.1007/s00359-003-0415-1 CrossRefGoogle Scholar
  4. Cheung A, Zhang SW, Stricker C, Srinivasan MV (2007) Animal navigation: the difficulty of moving in a straight line. Biol Cybern 97:47–61. doi: 10.1007/s00422-007-0158-0 PubMedCrossRefGoogle Scholar
  5. Collett TS (1992) Landmark learning and guidance in insects. Phil Trans 337:295–303. doi: 10.1098/rstb.1992.0107 CrossRefGoogle Scholar
  6. Collett TS (2000) Collett M (2000) Path integration in insects. Curr Opin Neurobiol 10:757–762. doi: 10.1016/S0959-4388(00)00150-1 PubMedCrossRefGoogle Scholar
  7. Collett M, Collett TS (2009) Local and global navigational coordinate systems in desert ants. J Exp Biol 212:901–905. doi: 10.1242/jeb.024539 PubMedCrossRefGoogle Scholar
  8. Dacke M, Nilsson D-E, Scholtz CH, Byrne M, Warrant EJ (2003a) Insect orientation to polarized moonlight. Nature 424:33. doi: 10.1038/424033a PubMedCrossRefGoogle Scholar
  9. Dacke M, Nordström P, Scholtz CH (2003b) Twilight orientation to polarised light in the crepuscular dung beetle Scarabaeus zambesianus. J Exp Biol 206:1535–1543PubMedCrossRefGoogle Scholar
  10. Dacke M, Byrne M, Scholtz CH, Warrant EJ (2004) Lunar orientation in a beetle. Proc Royal Soc Lond B 271:361–365. doi: 10.1098/rspb.2003.2594 CrossRefGoogle Scholar
  11. Dacke M, Byrne M, Baird E, Scholtz CH, Warrant EJ (2011) How dim is dim? Precision of the celestial compass in moonlight and sunlight. Phil Trans 366:697–702. doi: 10.1098/rstb.2010.0191 CrossRefGoogle Scholar
  12. Fukushi T (2001) Homing in wood ants, Formica japonica: use of the skyline panorama. J Exp Biol 204:2063–2072PubMedGoogle Scholar
  13. Graham P, Cheng K (2009) Ants use the panoramic skyline as a visual cue during navigation. Curr Biol 19:R935–R937. doi: 10.1016/j.cub.2009.08.015 PubMedCrossRefGoogle Scholar
  14. Hegedüs R, Åkesson S, Horváth G (2007) Polarization patterns of thick clouds: overcast skies have distribution of the angle of polarization similar to that of clear skies. J Opt Soc Am A 24:2347–2356. doi: 10.1364/JOSAA.24.002347 CrossRefGoogle Scholar
  15. Kim TW, Kim TK, Choe JC (2010) Compensation for homing errors by using courtship structures as visual landmarks. Behav Ecol 21:836–842. doi: 10.1093/beheco/arq067 CrossRefGoogle Scholar
  16. Kohler M, Wehner R (2005) Idiosyncratic route-based memories in desert ants, Melophorus bagoti: how do they interact with path-integration vectors? Neurobiol Learn Mem 83:1–12. doi: 10.1016/j.nlm.2004.05.011 PubMedCrossRefGoogle Scholar
  17. Merkle T, Wehner R (2008) Landmark guidance and vector navigation in outbound desert ants. J Exp Biol 211:3370–3377. doi: 10.1242/jeb.022715 PubMedCrossRefGoogle Scholar
  18. Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290PubMedCrossRefGoogle Scholar
  19. Narendra A (2007a) Homing strategies of the Australian desert ant Melophorus bagoti II. Proportional path-integration takes the ant half-way home. J Exp Biol 210:1798–1803. doi: 10.1242/jeb.02768 PubMedCrossRefGoogle Scholar
  20. Narendra A (2007b) Homing strategies of the Australian desert ant Melophorus bagoti II. Interaction of the path integrator with visual cue information. J Exp Biol 210:1804–1812. doi: 10.1242/jeb.02791 PubMedCrossRefGoogle Scholar
  21. Pomozi I, Horváth G, Wehner R (2001) How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation. J Exp Biol 204:2933–2942PubMedGoogle Scholar
  22. Reid SF, Narendra A, Hemmi JM, Zeil J (2011) Polarised skylight and the landmark panorama provide night-active bull ants with compass information during route following. J Exp Biol 214:363–370. doi: 10.1242/jeb.049338 PubMedCrossRefGoogle Scholar
  23. Ugolini A, Galanti G, Mercatelli L (2009) Difference in skylight intensity is a new celestial cue for sandhopper orientation (Amphipoda, Talitridae). Anim Behav 77:171–175. doi: 10.1016/j.anbehav.2008.09.035 CrossRefGoogle Scholar
  24. von Frisch K, Lindauer M (1954) Himmel und Erde in Konkurrenz bei der Orientierung der Bienen. Naturwissenschaften 41:245–253CrossRefGoogle Scholar
  25. Wehner R (1992) Arthropods. In: Papi F (ed) Animal Homing. Chapman and Hall, London, pp 45–144CrossRefGoogle Scholar
  26. Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189:579–588CrossRefGoogle Scholar
  27. Wehner R, Srinivasan MV (2003) Path integration in insects. In: Jeffrey KJ (ed) The Neurobiology of Spatial Behaviour. Oxford University Press, Oxford, pp 9–30CrossRefGoogle Scholar
  28. Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140PubMedGoogle Scholar
  29. Wolf H (2011) Odometry and insect navigation. J Exp Biol 214:1629–1641. doi: 10.1242/jeb.038570 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marie Dacke
    • 1
    • 2
    Email author
  • Marcus Byrne
    • 2
  • Jochen Smolka
    • 1
  • Eric Warrant
    • 1
  • Emily Baird
    • 1
  1. 1.Department of Biology, Lund Vision GroupLund UniversityLundSweden
  2. 2.School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandWitsSouth Africa

Personalised recommendations