Journal of Comparative Physiology A

, Volume 198, Issue 8, pp 593–605 | Cite as

Magnetic field perception in the rainbow trout Oncorynchus mykiss: magnetite mediated, light dependent or both?

Original Paper


In the present study, we demonstrate the role of the trigeminal system in the perception process of different magnetic field parameters by heartbeat conditioning, i.e. a significantly longer interval between two consecutive heartbeats after magnetic stimulus onset in the salmonid fish Oncorhynchus mykiss. The electrocardiogram was recorded with subcutaneous silver wire electrodes in freely swimming fish. Inactivation of the ophthalmic branch of the trigeminal nerve by local anaesthesia revealed its role in the perception of intensity/inclination of the magnetic field by abolishing the conditioned response (CR). In contrast, experiments with 90° direction shifts clearly showed the normal conditioning effect during trigeminal inactivation. In experiments under red light and in darkness, CR occurred in case of both the intensity/inclination stimulation and 90° direction shifts, respectively. With regard to the data obtained, we propose the trigeminal system to perceive the intensity/inclination of the magnetic field in rainbow trouts and suggest the existence of another light-independent sensory structure that enables fish to detect the magnetic field direction.


Rainbow trout Trigeminus Magnetic field Navigation Anadromy 


  1. Beason CB, Nichols JE (1984) Magnetic orientation and magnetically sensitive material in a transequatorial migratory bird. Nature 309:151–153CrossRefGoogle Scholar
  2. Begall S, Cerveny J, Neef J, Vojtech O, Burda H (2008) Magnetic alignment in grazing and resting cattle and deer. Proc Natl Acad Sci USA 105:13451–13455PubMedCrossRefGoogle Scholar
  3. Boles LC, Lohmann KJ (2003) True navigation and magnetic maps in spiny lobsters. Nature 421:60–63PubMedCrossRefGoogle Scholar
  4. Braithwaite VA, De Perera TB (2005) Short-range orientation in fish: how fish map space. Mar Fresh Behav Physiol 39(1):37–47CrossRefGoogle Scholar
  5. Burda H, Marhold S, Westenberger T, Wiltschko R, Wiltschko W (1990) Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus (Bathyergidae). Experientia 46:528–530PubMedCrossRefGoogle Scholar
  6. Burda H, Begall S, Cerveny J, Neef J, Němec P (2009) Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc Natl Acad Sci USA 106:5708–5713PubMedCrossRefGoogle Scholar
  7. Cashmore AR, Jarillo JA, Wu YJ, Liu D (1999) Cryptochromes: blue light receptors for plants and animals. Science 284:760–765PubMedCrossRefGoogle Scholar
  8. Cerveny J, Begall S, Koubek P, Nouvakova P, Burda H (2011) Directional preference may enhance hunting accuracy in foraging foxes. Biol Lett. doi:10.1098/rsbl.2010.1145
  9. Dennis TE, Rayner MJ, Walker MM (2007) Evidence that pigeon orient to geomagnetic intensity during homing. Proc R Soc B. doi:10.1098/rspb.2007.3768
  10. Deutschlander ME, Borland SC, Phillips JB (1999) Extraocular magnetic compass in newts. Nature 400:324–325PubMedCrossRefGoogle Scholar
  11. Diebel CE, Proksch R, Green CR, Neilson P, Walker MM (2000) Magnetite defines a vertebrate magnetoreceptor. Nature 406:299–302PubMedCrossRefGoogle Scholar
  12. Dommer DH, Gazzolo PJ, Painter MS, Phillips JB (2008) Magnetic compass orientation by larval Drosophila melanogaster. J Insect Physiol 54:719–726PubMedCrossRefGoogle Scholar
  13. Falkenberg G, Fleissner G, Schuchardt K, Kuebacher M, Thalau P, Mouritsen H, Heyers D, Wellenreuther G, Fleissner G (2010) Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS ONE 5(2):e9231. doi:10.1371/journal.pone PubMedCrossRefGoogle Scholar
  14. Fischer JH, Freake MJ, Borland SC, Phillips JB (2001) Evidence for the use of magnetic map information by an amphibian. Anim Behav 62:1–10CrossRefGoogle Scholar
  15. Fleissner G, Holtkamp-Rötzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N, Wiltschko W (2003) Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 458:350–360PubMedCrossRefGoogle Scholar
  16. Fleissner G, Stahl B, Thalau P, Falkenberg G, Fleissner G (2007) A novel concept of Fe-mineral based magnetoreception: histological and physiochemical data from the upper beak of homing pigeons. Naturwissenschaften 94:631–642PubMedCrossRefGoogle Scholar
  17. Hanson M, Westerberg H (1987) Occurrence of magnetic material in teleosts. Comp Biochem Physiol A 86:169–172PubMedCrossRefGoogle Scholar
  18. Hanson M, Karlon L, Westerberg H (1984) Magnetic material in the European eel (Anguilla anguilla L.). Comp Biochem Physiol A 77:221–224CrossRefGoogle Scholar
  19. Harada Y (2008) The relation between the migration function of birds and fishes and their lagenal function. Acta Otolaryngol 128:432–439PubMedCrossRefGoogle Scholar
  20. Harada Y, Taniguchi M, Namatame H, Iida A (2001) Magnetic materials in the otholiths of fish and birds lagena and their function. Acta Otolaryngol 121:590–599PubMedCrossRefGoogle Scholar
  21. Helfman G, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes: biology, evolution and ecology. Wiley, New YorkGoogle Scholar
  22. Hellinger J, Hoffmann K-P (2009) Magnetic field perception in the rainbow trout, Oncorhynchus mykiss. J Comp Physiol A 195:873–879CrossRefGoogle Scholar
  23. Holland RA, Thorup K, Vonhof MJ, Cochran WW, Wikelski M (2006) Bat orientation using Earth’s magnetic field. Nature 444:702PubMedCrossRefGoogle Scholar
  24. Holland RA, Kirschvink JL, Doak TG, Wikelski M (2008) Bats use magnetite to detect the earths magnetic field. PLoS ONE 3:e1676PubMedCrossRefGoogle Scholar
  25. Holland RA, Borissov I, Siemers BM (2010) A nocturnal mammal, the greater mouse-eared bat calibrates a magnetic compass by the sun. Proc Natl Acad Sci USA 107:6941–6945PubMedCrossRefGoogle Scholar
  26. Johnsen S, Lohmann KJ (2005) The physics and neurobiology of magnetoreception. Nat Rev Neurosci 6:703–712PubMedCrossRefGoogle Scholar
  27. Keary N, Rudolph T, Voss J, Thalau P, Wiltschko R, Wiltschko W (2009) Oscillating magnetic field disrupts magnetic orientation in zebrafinches, Taenopygia guttata. Front Zool 6:25PubMedCrossRefGoogle Scholar
  28. Kimchi T, Etienne AS, Terkel J (2004) A subterranean mammal uses the magnetic compass for path integration. Proc Natl Acad Sci 101:1105–1109PubMedCrossRefGoogle Scholar
  29. Kirschvink JL, Walker MM, Chang SB, Dizon AE, Peterson KA (1985) Chains of single domain magnetite in the Chinook salmon, Oncorhynchus tschawytscha. J Comp Physiol A 157:375–381CrossRefGoogle Scholar
  30. Liedvogel M, Maeda K, Henbest K, Schleicher E, Simon T, Timmel CR, Hore PJ, Mouritsen H (2007) Chemical magnetoreception: bird chryptochrome 1a is excited by blue light and form long-lived radical-pairs. PLoS ONE 2(10):e1106. doi:10.1371/journals.pone.0001106 PubMedCrossRefGoogle Scholar
  31. Light P, Salmon M, Lohmann KJ (1993) Geomagnetic orientation of loggerhed sea turtles: evidence for an inclination compass. J Exp Biol 182:1–10Google Scholar
  32. Lohmann KJ, Lohmann CMF (1993) A light-independent magnetic compass in the leatherback seaturtle. Bio Bull 185:149–151CrossRefGoogle Scholar
  33. Lohmann KJ, Lohmann CMF (1994) Detection of magnetic inclination angles by sea turtles: a possible mechanism for detecting latitude. J Exp Biol 194:23–32PubMedGoogle Scholar
  34. Lohmann KJ, Lohmann CMF (1996) Orientation and open-sea navigation in sea turtles. J Exp Biol 199:73–81PubMedGoogle Scholar
  35. Lohmann KJ, Pentchev ND, Nevitt GA, Stetten GD, Zimmer-Faust RK, Jarrard HE, Boles LC (1995) Magnetic orientation in spiny lobsters in the ocean: experiments with underseas coil systems. J Exp Biol 198:2041–2048PubMedGoogle Scholar
  36. Lohmann KJ, Lohmann CMF, Ehrhart LM, Bagley DA, Swing T (2004) Geomagnetic map used in sea-turtle navigation. Nature 428:909–910PubMedCrossRefGoogle Scholar
  37. Lohmann JK, Putman NF, Lohmann CM (2008) Geomagnetic imprinting: a unifying hypothesis of long-distance migration natal homing in salmon and sea turtles. Proc Natl Acad Sci USA 205:19096–19101CrossRefGoogle Scholar
  38. Lohmann KJ, Putman NF, Lohmann CMF (2011) The magnetic map of hatchling loggerhead sea turtles. Curr Opin Neurobiol 22:1–7Google Scholar
  39. Marhold S, Burda H, Wiltschko W (1997) A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84:421–423CrossRefGoogle Scholar
  40. Möller A, Sagasser S, Wiltschko W, Schierwater B (2004) Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschaften 91:585–588PubMedCrossRefGoogle Scholar
  41. Moore A, Riley WD (2009) Magnetic material associated with the lateral line of the European eel Anguilla anguilla. J Fish Biol 74:1629–1634PubMedCrossRefGoogle Scholar
  42. Moore A, Freake SM, Thomas IM (1990) Magnetic particles in the lateral line of the Atlantic salmon, Salmo salar. Philos Trans Soc Lond B 329:11–15CrossRefGoogle Scholar
  43. Mora CV, Davison M, Wild M, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511PubMedCrossRefGoogle Scholar
  44. Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R (2004) Cryptochromes and neural-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc Natl Acad Sci USA 101:14294–14299PubMedCrossRefGoogle Scholar
  45. Muheim R, Edgar NM, Sloan KA, Phillips JB (2006) Magnetic compass orientation in C57BL/6J mice. Learn Behav 34:366–377PubMedCrossRefGoogle Scholar
  46. Nießner C, Denzau S, Gross JC, Peichl L, Bischoff HJ, Fleissner G, Wiltschko W, Wiltschko R (2011) Avian ultraviolet/violet cones identified as probable magnetoreceptors. PLoS ONE 6(5):e20091. doi:10.1371/journal.pone.002009 PubMedCrossRefGoogle Scholar
  47. Nishi T, Kawamura G (2005) Anguilla japonica is already magnetosensitive at the glass eel phase. J Fish Biol 67:1213–1224CrossRefGoogle Scholar
  48. Nishi T, Kamawura G, Matsumoto K (2004) Magnetic sense in the Japanese eel, Anguilla japonica. J Exp Biol 207:2965–2970PubMedCrossRefGoogle Scholar
  49. Palmer LM, Mensinger AF (2004) Effect of the anaesthetic tricaine (MS-222) on the nerve activity in the anterior lateral line of the oyster toadfish Opsanus tau. J Neurophysiol 92:1034–1041PubMedCrossRefGoogle Scholar
  50. Phillips JB (1986) Magnetic compass orientation in the red spotted newt (Notophthalmus viridescens). J Comp Physiol A 158:103–109PubMedCrossRefGoogle Scholar
  51. Phillips JB, Borland SC (1992a) Behavioural evidence for the use of a light dependent magnetroreception mechanism by a vertebrate. Nature 359:142–144CrossRefGoogle Scholar
  52. Phillips JB, Borland SC (1992b) Magnetic compass orientation is eliminated under near infrared-light in the eastern red spotted newt Notophtalmus viridescens. Anim Behav 44:796–797CrossRefGoogle Scholar
  53. Phillips JB, Borland SC (1992c) Wavelength specific effects of light on magnetic compass orientation in the eastern red-spotted newt. Ethol Ecol Evol 4:33–42CrossRefGoogle Scholar
  54. Putman NF, Lohmann KJ (2008) Compatibility of magnetic imprinting and secular variation. Curr Biol 18:596–597CrossRefGoogle Scholar
  55. Putman NF, Endres CS, Lohmann CMF, Lohmann KJ (2011) Longitude perception and bicoordinate magnetic maps in sea turtles. Curr Biol 21:463–466PubMedCrossRefGoogle Scholar
  56. Quinn TP (1980) Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. J Comp Physiol A 137:243–248CrossRefGoogle Scholar
  57. Quinn TP, Brannon EL (1982) The use of celestial and magnetic cues by orienting sockeye salmon smolts. J Comp Physiol A 147:547–552CrossRefGoogle Scholar
  58. Quinn TP, Merrill RT, Brannon EL (1981) Magnetic field detection in sockeye salmon. J Exp Zool 217:137–142CrossRefGoogle Scholar
  59. Rickli M, Leuthold RH (1988) Homing in harvester termites: Evidence of magnetic orientation. Ethology 77:209–216CrossRefGoogle Scholar
  60. Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78:707–718PubMedCrossRefGoogle Scholar
  61. Schiffner I, Fuhrmann P, Wiltschko R (2011) Tracking pigeons in a magnetic anomaly and in magnetically “quiet” terrain. Naturwissenschaften 98:575–581PubMedCrossRefGoogle Scholar
  62. Schulten K, Swenberg CE (1978) A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z Phys Chem 111:1–5CrossRefGoogle Scholar
  63. Semm P, Demaine C, Wiltschko W (1984) Neural basis of the magnetic compass: interactions of visual, magnetic and vestibular inputs in the pigeon’s brain. J Comp Physiol A 155:283–288CrossRefGoogle Scholar
  64. Sherbakov D, Winklehofer M, Petersen N, Steidle J, Hilbig R, Blum M (2005) Magnetosensation in zebrafish. Curr Biol 15:161–162CrossRefGoogle Scholar
  65. Späth M, Schweickert W (1977) The effect of metacaine (MS-222) on the activity of the efferent and afferent nerves in the teleost lateral-line system. Naunyn Schmiedebergs Arch Pharmacol 297:9–16PubMedCrossRefGoogle Scholar
  66. Stapput K, Thalau P, Wiltschko R, Wiltschko W (2008) Orientation of birds in total darkness. Curr Biol 18:602–606PubMedCrossRefGoogle Scholar
  67. Tesch FW (1974) Influence of geomagnetism and salinity on the direction choice of eels. Helgol Meeresunters 26:382–392CrossRefGoogle Scholar
  68. Thalau P, Ritz T, Burda H, Wegner RE, Wiltschko R (2006) The magnetic compass mechanisms of birds and rodents are based on different physical principles. J R Soc Interface 3:583–587PubMedCrossRefGoogle Scholar
  69. Treiber CD, Salzer MC, Riegler J, Edelman N, Sugar C, Breuss M, Pichler P, Cadiou H, Saunders M, Lythgoe M, Shaw J, Keays DA (2012) Clusters of iron-rich cells in the upper beak of pigeons are macrophages and not magnetosensitive neurons. Nature 484:367–371PubMedGoogle Scholar
  70. Vácha M (2006) Laboratory behavioural assay of insect magnetoreception: magnetosensitivity of Periplaneta americana. J Exp Biol 209:3882–3886PubMedCrossRefGoogle Scholar
  71. Vácha M, Soukopova H (2004) Magnetic orientation in the mealworm beetle Tenebrio and the effect of light. J Exp Biol 207:1241–1248PubMedCrossRefGoogle Scholar
  72. Vácha M, Půžová T, Kvíćalová M (2009) Radio frequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol 212:3473–3477PubMedCrossRefGoogle Scholar
  73. Vilches-Troja J, Dunn RF, O’Leary DP (1984) Relationship of the vestibular hair cells to magnetic particles in the otholith of the guitarfish sacculus. J Comp Neurol 226:489–494CrossRefGoogle Scholar
  74. Voss J, Keary N, Bischoff H-J (2007) The use of the geomagnetic field for short distance orientation in zebra finches. Neuro Rep 18:1053–1058Google Scholar
  75. Walcott C (1978) Anomalies in the earth’s magnetic field increase the scatter of pigeons’ vanishing bearings. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Berlin, pp 143–151Google Scholar
  76. Walker MM (1984) Learned magnetic field discrimination in the yellowfin thuna, Thunnus albacares. J Comp Physiol A 155:673–679CrossRefGoogle Scholar
  77. Walker MM (1998) On a wing and a vector: a model for magnetic navigation by homing pigeons. J Theor Biol 192:341–349PubMedCrossRefGoogle Scholar
  78. Walker MM (2008) A model for encoding of magnetic field intensity by magnetite based magnetoreceptor cells. J Theor Biol 250:85–91PubMedCrossRefGoogle Scholar
  79. Walker MM, Bitterman ME (1985) Conditioned responding to magnetic fields by honeybees. J Comp Physiol A 157:67–71CrossRefGoogle Scholar
  80. Walker MM, Bittermann ME (1989) Attached magnets impair magnetic field discrimination in honeybees. J Exp Biol 141:447–451Google Scholar
  81. Walker MM, Quinn TP, Kirschvink JL, Groot C (1988) Production of single-domain magnetite throughout life by sockeye salmon, Oncorhynchus nerka. J Exp Biol 140:51–63PubMedGoogle Scholar
  82. Walker MM, Diebel CE, Pankhurst PM, Montgomery JC, Green CR (1997) Structure and function of the vertebrate magnetic sense. Nature 390:371–376PubMedCrossRefGoogle Scholar
  83. Wang Y, Pan Y, Parsons S, Walker MM, Zhang S (2007) Bats respond to polarity of a magnetic field. Proc R Soc B 274:2901–2905PubMedCrossRefGoogle Scholar
  84. Williams MN, Wild JM (2001) Trigeminally innervated iron-containing structures in the beak of homing pigeons, and other birds. Brain Res 889:243–246PubMedCrossRefGoogle Scholar
  85. Wiltschko W (1974) Evidence for an innate magnetic compass in garden warblers. Naturwissenschaften 61:406–407PubMedCrossRefGoogle Scholar
  86. Wiltschko R, Wiltschko W (1995) Coil systems. In: Zoophysiology: magnetic orientation in animals. Springer, Heidelberg, pp 9–10Google Scholar
  87. Wiltschko W, Wiltschko R (1972) Magnetic compass of European robins. Science 176:62–64PubMedCrossRefGoogle Scholar
  88. Wiltschko W, Wiltschko R (1996) Magnetic orientation in birds. J Exp Biol 199:29–38PubMedCrossRefGoogle Scholar
  89. Wiltschko W, Wiltschko R (1999) Light-dependent magnetoreception in birds: does directional information change with light intensity? Naturwissenschaften 87:36–40CrossRefGoogle Scholar
  90. Wiltschko W, Wiltschko R (2001) Light-dependent magnetoreception in birds: the behaviour of European robins, Erithacus rubecula, under monochromatic light of various wavelengths and intensities. J Exp Biol 204:3295–3302PubMedGoogle Scholar
  91. Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 191:675–693CrossRefGoogle Scholar
  92. Wiltschko R, Wiltschko W (2006) Magnetoreception. Bio Essays 28:157–168Google Scholar
  93. Wiltschko W, Wiltschko R (2007) Magnetoreception in birds: two receptors for two different tasks. J Ornithol 148(Suppl):S61–S76CrossRefGoogle Scholar
  94. Wiltschko R, Nohr D, Wiltschko W (1981) Pigeons with a deficient sun compass use the magnetic compass. Science 214:343–345PubMedCrossRefGoogle Scholar
  95. Wiltschko W, Gesson M, Wiltschko R (2001) Magnetic compass orientation of European robins under 565 nm green light. Naturwissenschaften 88:387–390PubMedCrossRefGoogle Scholar
  96. Wiltschko W, Möller A, Gesson M, Noll C, Wiltschko R (2004) Light-dependent magnetoreception in birds: analysis of the behavior under red light after pre-exposure to red light. J Exp Biol 207:1193–1202PubMedCrossRefGoogle Scholar
  97. Wiltschko R, Schiffner I, Fuhrmann P, Wiltschko W (2010a) The role of magnetite-based receptors in the beak in pigeon homing. Curr Biol 20:1534–1538PubMedCrossRefGoogle Scholar
  98. Wiltschko R, Stapput K, Thalau P, Wiltschko W (2010b) Directional orientation of birds by the magnetic field under different light conditions. J R Soc Interface. doi:10.1098/rsif.2009.0367.focus
  99. Wiltscko R, Schiffner I, Wiltschko W (2009) A strong magnetic anomaly affects pigeon navigation. J Exp Biol 212:2983–2990CrossRefGoogle Scholar
  100. Wu LQ, Dickman JD (2011) Magnetoreception in the avian brain in part mediated by the inner ear lagena. Curr Biol 21:418–423PubMedCrossRefGoogle Scholar
  101. Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild JM, Mouritsen H (2009) Visual but not trigeminal mediation of magnetic compass information in a migratory bird. Nature 461:1274–1278PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Lehrstuhl für Allgemeine Zoologie und Neurobiologie, Ruhr-Universität BochumBochumGermany

Personalised recommendations