Advertisement

Journal of Comparative Physiology A

, Volume 198, Issue 7, pp 525–540 | Cite as

Involvement of Na+/K+pump in fine modulation of bursting activity of the snail Br neuron by 10 mT static magnetic field

  • Ljiljana Nikolić
  • Nataša Todorović
  • Joanna Zakrzewska
  • Marina Stanić
  • Snežana Rauš
  • Aleksandar Kalauzi
  • Branka Janać
Original Paper

Abstract

The spontaneously active Br neuron from the brain-subesophageal ganglion complex of the garden snail Helix pomatia rhythmically generates regular bursts of action potentials with quiescent intervals accompanied by slow oscillations of membrane potential. We examined the involvement of the Na+/K+ pump in modulating its bursting activity by applying a static magnetic field. Whole snail brains and Br neuron were exposed to the 10-mT static magnetic field for 15 min. Biochemical data showed that Na+/K+-ATPase activity increased almost twofold after exposure of snail brains to the static magnetic field. Similarly, 31P NMR data revealed a trend of increasing ATP consumption and increase in intracellular pH mediated by the Na+/H+ exchanger in snail brains exposed to the static magnetic field. Importantly, current clamp recordings from the Br neuron confirmed the increase in activity of the Na+/K+ pump after exposure to the static magnetic field, as the magnitude of ouabain’s effect measured on the membrane resting potential, action potential, and interspike interval duration was higher in neurons exposed to the magnetic field. Metabolic pathways through which the magnetic field influenced the Na+/K+ pump could involve phosphorylation and dephosphorylation, as blocking these processes abolished the effect of the static magnetic field.

Keywords

Bursting activity Current clamp Na+/K+ pump Static magnetic field Snail 

Abbreviations

AP

Action potential

ISI

Interspike interval

NMR

Nuclear magnetic resonance

PKA

Protein kinase A

PKG

Protein kinase G

PME

Phosphomonoesters

Pi

Inorganic phosphate

PCr

Phosphocreatinine

Rpmax

Maximum value of resting membrane potential

SMF

Static magnetic field

Notes

Acknowledgments

This study was supported by the Ministry of Education and Science of the Republic of Serbia (grant no. 173027). The authors are grateful to Dr. Gordana Kartelija for her advice and general support during the experimental work.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments comply with the current laws of the Republic of Serbia.

References

  1. Alevizos A, Weiss K, Koester J (1991) Synaptic actions of identified peptidergic neuron R15 in Aplysia. III. Activation of the large hermaphroditic duct. J Neurosci 11:1282–1290. doi: 10.2307/1542397 PubMedGoogle Scholar
  2. Ayrapetyan S (1976) Involvement of the sodium pump in slow oscillations underlying the bursting pattern in Helix neurons. In: Salanki J (ed) Neurobiology of invertebrates. Akademiai Kiado, Budapest, pp 353–370Google Scholar
  3. Balaban P, Bravarenko N, Kuznetzov A (1990) Influence of a stationary magnetic field on bioelectric properties of snail neurons. Bioelectromagnetics 11:13–25. doi: 10.1002/bem.2250110104 PubMedCrossRefGoogle Scholar
  4. Ballerini L, Bracci E, Nistri A (1997) Pharmacological block of the electrogenic sodium pump disrupts rhythmic bursting induced by strychnine and bicuculline in the neonatal rat spinal cord. J Neurophysiol 77:17–23PubMedGoogle Scholar
  5. Benson J, Adams W (1987) The control of rhythmic neuronal firing. In: Kaczmarek L, Levitan I (eds) Neuromodulation. Oxford University Press, New York, pp 100–118Google Scholar
  6. Blank M, Soo L (1996) The threshold for Na,K-ATPase stimulation by electromagnetic fields. Bioelectrochem Bioenerg 40:63–65. doi: 10.1016/0302-4598(96)05053-2 CrossRefGoogle Scholar
  7. Boron W, Chen L, Parker M (2009) Modular structure of sodium-coupled bicarbonate transporters. J Exp Biol 212(Pt 11):1697–1706. doi: 10.1242/jeb.028563 PubMedCrossRefGoogle Scholar
  8. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  9. Carpenter D, Alving B (1968) A contribution of an electrogenic Na+ pump to membrane potential in Aplysia neurons. J Gen Physiol 52:1–21. doi: 10.1085/jgp.52.1.1 PubMedCrossRefGoogle Scholar
  10. Darbon P, Tscherter A, Yvon C, Streit J (2003) Role of the electrogenic Na/K pump in disinhibition-induced bursting in cultured spinal networks. J Neurophysiol 90:3119–3129. doi: 10.1152/jn.00579.2003 PubMedCrossRefGoogle Scholar
  11. Ewald D, Levitan I (1987) Ion channels regulated by calcium. In: Kaczmarek L, Levitan I (eds) Neuromodulation. Oxford University Press, New York, pp 138–158Google Scholar
  12. Gadsby D (1985) Influence of Na/K pump current on action potentials in Purkinje fibers. Adv Myocardiol 5:279–294PubMedGoogle Scholar
  13. Gadsby D, Cranefield P (1979) Electrogenic sodium extrusion in cardiac Purkinje fibers. J Gen Physiol 73:819–837. doi: 10.1085/jgp.73.6.819 PubMedCrossRefGoogle Scholar
  14. Glitsch H (2001) Electrophysiology of the sodium-potassium-ATPase in cardiac cells. Physiol Rev 81:1791–1826PubMedGoogle Scholar
  15. Goldstein J, Mok J, Simon C, Leiter J (2000) Intracellular pH regulation in neurons from chemosensitive and nonchemosensitive regions of Helix aspersa. Am J Physiol Regul Integr Comp Physiol 279:R414–R423PubMedGoogle Scholar
  16. Grover G, Garlid K (2000) ATP-sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cell Cardiol 32:677–695. doi: 10.1006/jmcc.2000.1111 PubMedCrossRefGoogle Scholar
  17. Harlow T, Greaves C, White A, Brown L, Hart A, Ernst E (2004) Randomised controlled trial of magnetic bracelets for relieving pain in osteoarthritis of the hip and knee. BMJ 329(7480):1450–1454. doi: 10.1136/bmj.329.7480.1450 PubMedCrossRefGoogle Scholar
  18. Hille B (2001) Potassium channels and chloride channels. In: Ion channels of excitable membranes, 3rd edn. Sinauer Associates, Sunderland, pp 131–169Google Scholar
  19. ICNIRP (2009) Guidelines on limits of exposure to static magnetic fields. Health Phys 96:504–514Google Scholar
  20. Jahan-Parwar B, Smith M, von Baumgarten R (1969) Activation of neurosecretory cells in Aplysia by osphradial stimulation. Am J Physiol 216:1246–1257PubMedGoogle Scholar
  21. Jie-Fei S, Yong-Lie C, Li D (2007) Effects of static magnetic fields on the voltage-gated potassium channel currents in trigeminal root ganglion neurons. Neurosci Letts 415:164–168CrossRefGoogle Scholar
  22. Johnson S, Seutin V, North R (1992) Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump. Science 258:665–667. doi: 10.1126/science.1329209 PubMedCrossRefGoogle Scholar
  23. Junge D, Stephens C (1973) Cyclic variation of potassium conductance in a burst-generating neurone in Aplysia. J Physiol 235:155–181PubMedGoogle Scholar
  24. Kim D, Smith T (1986) Effects of amiloride and ouabain on contractile state, Ca and Na fluxes, and Na content in cultured chick heart cells. Mol Pharmacol 29:363–371PubMedGoogle Scholar
  25. Kim D, Cragoe E Jr, Smith T (1987) Relations among sodium pump inhibition, Na–Ca and Na–H exchange activities, and Ca–H interaction in cultured chick heart cells. Circ Res 60:185–193PubMedCrossRefGoogle Scholar
  26. Lee C (1985) 200 years of digitalis: the emerging central role of the sodium ion in the control of cardiac force. Am J Physiol 249:C367–C378PubMedGoogle Scholar
  27. Levi A (1991) The effect of strophanthidin on action potential, calcium current and contraction in isolated guinea-pig ventricular myocytes. J Physiol 443:1–23PubMedGoogle Scholar
  28. Levi A (1992) The electrogenic sodium/potassium pump and passive sodium influx of isolated guinea pig ventricular myocytes. J Cardiovasc Electrophysiol 3:225–238. doi: 10.1111/j.1540-8167.1992.tb00969.x CrossRefGoogle Scholar
  29. Levitan E, Levitan I (1988) A cyclic GMP analog decreases the currents underlying bursting activity in the Aplysia neuron R15. J Neurosci 8:1162–1171PubMedGoogle Scholar
  30. McCormick D (2008) Membrane potential and action potential. In: Squire L, Bloom F, Spitzer N, du Lac S, Ghosh A, Berg D (eds) Fundamental neuroscience, 3rd edn. Academic Press/Elsevier, Amsterdam, pp 112–132Google Scholar
  31. McLean M, Holcomb R, Wamil A, Pickett J, Cavopol A (1995) Blockade of sensory neuron action potentials by a static magnetic field in the 10 mT range. Bioelectromagnetics 16:20–32. doi: 10.1002/bem.2250160108 PubMedCrossRefGoogle Scholar
  32. Moghadam M, Firoozabadi M, Janahmadi M (2008) 50 Hz alternating extremely low frequency magnetic fields affect excitability, firing and action potential shape through interaction with ionic channels in snail neurons. Environmentalist 28:341–347. doi: 10.1007/s10669-007-9143-3 CrossRefGoogle Scholar
  33. Moghadam M, Firoozabadi M, Janahmadi M (2011) Effects of weak environmental magnetic fields on the spontaneous bioelectrical activity of snail neurons. J Membr Biol 240:63–71. doi: 10.1007/s00232-011-9344-z PubMedCrossRefGoogle Scholar
  34. Nikolic L, Kartelija G, Nedeljkovic M (2008) Effect of static magnetic fields on bioelectric properties of the Br and N1 neurons of snail Helix pomatia. Comp Biochem Physiol A Mol Integr Physiol 151:657–663. doi: 10.1016/j.cbpa.2008.08.006 PubMedCrossRefGoogle Scholar
  35. Nikolic L, Rokic M, Todorovic N, Kartelija G, Nedeljkovic M, Zakrzewska J (2010) Effect of alternating the magnetic field on phosphate metabolism in the nervous system of Helix pomatia. Biol Res 43:243–250. doi: 10.4067/S0716-97602010000200012 PubMedCrossRefGoogle Scholar
  36. Paupardin-Tritsch D, Hammond C, Gerschenfeld H (1986) Serotonin and cyclic GMP both induce an increase of the calcium current in the same identified molluscan neurons. J Neurosci 6:2715–2723PubMedGoogle Scholar
  37. Polidori E, Zeppa S, Potenza L, Martinelli C, Colombo E, Casadei L, Agostini D, Sestili P, Stocchi (2012) V Gene expression profile in cultured human umbilical vein endothelial cells exposed to a 300 mT static magnetic field. Bioelectromagnetics 33:65–74PubMedCrossRefGoogle Scholar
  38. Potenza L, Martinelli C, Polidori E, Zeppa S, Calcabrini C, Stocchi L, Sestili P, Stocchi V (2010) Effects of a 300 mT static magnetic field on human umbilical vein endothelial cells. Bioelectromagnetics 31:630–639Google Scholar
  39. Prina-Mello A, Farrell, Prendergast P, Campbell V, Coey J (2006) Influence of strong static magnetic fields on primary cortical neurons. Bioelectromagnetics 27:35–42PubMedCrossRefGoogle Scholar
  40. Pulver SR, Griffith LC (2010) Spike integration and cellular memory in a rhythmic network from Na+/K+ pump current dynamics. Nat Neurosci 13:53–59PubMedCrossRefGoogle Scholar
  41. Ramnanan C, Storey K (2006) Suppression of Na+/K+-ATPase activity during estivation in the land snail Otala lactea. J Exp Biol 209:677–688. doi: 10.1242/jeb.02052 PubMedCrossRefGoogle Scholar
  42. Rittenhouse A, Price C (1985) Peripheral axons of the parabolic burster neuron R15. Brain Res 333:330–335. doi: 10.1016/0006-8993(85)91587-2 PubMedCrossRefGoogle Scholar
  43. Rosen A (1996) Inhibition of calcium channel activation in GH3 cells by static magnetic fields. Biochim Biophys Acta 1282:149–155PubMedCrossRefGoogle Scholar
  44. Rosen AD, Lubowsky J (1990) Modification of spontaneous unit discharge in the lateral geniculate body by a magnetic field. Exp Neurol 108:261–265. doi: 10.1016/0014-4886(90)90132-C PubMedCrossRefGoogle Scholar
  45. Ruch S, Nishio M, Wasserstrom J (2003) Effect of cardiac glycosides on action potential characteristics and contractility in cat ventricular myocytes: role of calcium overload. J Pharmacol Exp Ther 307:419–428. doi: 10.1124/jpet.103.049189 PubMedCrossRefGoogle Scholar
  46. Saini H, Dhalla N (2007) Sarcolemmal cation channels and exchangers modify the increase in intracellular calcium in cardiomyocytes on inhibiting Na+-K+-ATPase. Am J Physio Heart Circ Physiol 293:H169–H181. doi: 10.1152/ajpheart.00007.2007 CrossRefGoogle Scholar
  47. Stubbs M, Van Den Boogaart A, Bashford C, Miranda P, Rodrigues L, Howe F, Griffiths J (1996) 31P-magnetic resonance spectroscopy studies of nucleated and non-nucleated erythrocytes; time domain data analysis (VARPRO) incorporating prior knowledge can give information on the binding of ADP. Biochim Biophys Acta 1291:143–148. doi: 10.1016/0304-4165(96)00058-X PubMedCrossRefGoogle Scholar
  48. Therien A, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol 279:C541–C566PubMedGoogle Scholar
  49. Thomas R (1969) Membrane current and intracellular sodium changes in a snail neuron during extrusion of injected sodium. J Physiol 201:495–514PubMedGoogle Scholar
  50. Thomas R (1974) Intracellular pH of snail neurons measured with a new pH-sensitive glass micro-electrode. J Physiol 238:159–180PubMedGoogle Scholar
  51. Tohse N, Nakaya H, Takeda Y, Kanno M (1995) Cyclic GMP-mediated inhibition of L-type Ca2+ channel activity by human natriuretic peptide in rabbit heart cells. Br J Pharmacol 114:1076–1082PubMedGoogle Scholar
  52. Vadasz I, Salanki J (1976) Mechanisms of spike and burst generation in the bimodal pacemaker RPal neuron of Helix pomatia L. In: Salanki J (ed) Neurobiology of invertebrates. Akademiai Kiado, Budapest, pp 371–381Google Scholar
  53. Wahler G, Rusch N, Sperelakis N (1990) 8-Bromo-cyclic GMP inhibits the calcium channel current in embryonic chick ventricular myocytes. Can J Physiol Pharmacol 68:531–534. doi: 10.1139/y90-076 PubMedCrossRefGoogle Scholar
  54. Wang Y, Huang R (2004) Diurnal modulation of the NaK-ATPase and spontaneous firing in the rat retinorecipient clock neurons. J Neuriophysiol 92:2295–2301. doi: 10.1152/jn.01369.2005 CrossRefGoogle Scholar
  55. Wang Y, Huang R (2006) Effects of sodium pump activity on spontaneous firing in neurons of the rat suprachiasmatic nucleus. J Neurophysiol 96:109–118PubMedCrossRefGoogle Scholar
  56. Wang Z, Sarje A, Che P, Yarema K (2009) Moderate strength (0.23–0.28 T) static magnetic fields (SMF) modulate signaling and differentiation in human embryonic cells. BMC Genomics 10:356. doi: 10.1186/1471-2164-10-356
  57. Wang Z, Che P, Du J, Ha B, Yarema K (2010) Static magnetic field exposure reproduces cellular effects of the Parkinson’s disease drug candidate ZM241385. PLoS ONE 5:e13883. doi: 10.1371/journal.pone.0013883 PubMedCrossRefGoogle Scholar
  58. WHO (2006) Static fields. Environmental health criteria 232. World Health Organization (WHO), GenevaGoogle Scholar
  59. Willis J, Gaubatz G, Carpenter D (1974) The role of the electrogenic sodium pump in modulation of pacemaker discharge of Aplysia neurons. J Cell Physiol 84:463–472. doi: 10.1002/jcp.1040840314 PubMedCrossRefGoogle Scholar
  60. Willoughby D, Thomas R, Schwiening C (1999) A role for Na+/H+ exchange in pH regulation in Helix neurons. Pflugers Arch 438:741–749. doi: 10.1007/s004240051101 PubMedCrossRefGoogle Scholar
  61. Wolsko P, Eisenberg D, Simon L, Davis R, Wallaczek J, Mayo-Smith M, Kaptchuk T, Phillips R (2004) Double-blind placebo-controlled trial of static magnets for the treatment of osteoarthritis of the knee: results of a pilot study. Altern Ther 10:36–43Google Scholar
  62. Yang Y, Yan Y, Zou X, Zhang C, Zhang H, Xu Y, Wang X, Janos P, Yang Z, Gu H (2011) Static magnetic field modulates rhythmic activities of a cluster of large local interneurons in Drosophila antennal lobe. J Neurophysiol 106:2127–2135Google Scholar
  63. Ye S, Yang J, Chen C (2004) Effect of static magnetic fields on the amplitude of action potential in the lateral giant neuron of crayfish. Int J Radiat Biol 80:699–708. doi: 10.1080/09553000400017424 PubMedCrossRefGoogle Scholar
  64. Yingst D (1988) Modulation of the Na,K-ATPase by Ca and intracellular proteins. Annu Rev Physiol 50:291–303. doi: 10.1146/annurev.ph.50.030188.001451 PubMedCrossRefGoogle Scholar
  65. Zsombok A, Schrofner S, Hermann A, Kerschbaum H (2005) A cGMP-dependent cascade enhances an L-type-like Ca2+ current in identified snail neurons. Brain Res 1032:70–76. doi: 10.1016/j.brainres.2004.11.003 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ljiljana Nikolić
    • 1
  • Nataša Todorović
    • 1
  • Joanna Zakrzewska
    • 2
  • Marina Stanić
    • 3
  • Snežana Rauš
    • 1
  • Aleksandar Kalauzi
    • 3
  • Branka Janać
    • 1
  1. 1.Department of Neurophysiology, Institute for Biological Research “Siniša Stanković”University of BelgradeBelgradeSerbia
  2. 2.Institute of General and Physical ChemistryBelgradeSerbia
  3. 3.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia

Personalised recommendations