Journal of Comparative Physiology A

, Volume 198, Issue 6, pp 451–463 | Cite as

Evidence of red sensitive photoreceptors in Pygopleurus israelitus (Glaphyridae: Coleoptera) and its implications for beetle pollination in the southeast Mediterranean

  • J. Martínez-Harms
  • M. Vorobyev
  • J. Schorn
  • A. Shmida
  • T. Keasar
  • U. Homberg
  • F. Schmeling
  • R. Menzel
Original Paper


A very well-documented case of flower-beetle interaction is the association in the Mediterranean region between red bowl-shaped flowers and beetles of the family Glaphyridae. The present study examines the visual mechanisms by which Pygopleurus israelitus (Glaphyridae: Scarabaeoidea: Coleoptera) would perceive the colors of flowers they visit by characterizing the spectral sensitivity of its photoreceptors. Our measurements revealed the presence of three types of photoreceptors, maximally sensitive in the UV, green and red areas of the spectrum. Using color vision space diagrams, we calculated the distribution of beetle-visited flower colors in the glaphyrid and honeybee color space and evaluated whether chromatic discrimination differs between the two types of pollinators. Respective color loci in the beetle color space are located on one side of the locus for green foliage background, whereas in the honeybee the flower color loci surround the locus occupied by green foliage. Our results represent the first evidence of a red sensitive photoreceptor in a flower-visiting coleopteran species, highlighting Glaphyridae as an interesting model group to study the role of pollinators in flower color evolution.


Coleoptera Pollination Color vision Flower colors Color space 


  1. Arikawa K, Mizuno S, Kinoshita M, Stavenga DG (2003) Coexpression of two visual pigments in a photoreceptor causes an abnormally broad spectral sensitivity in the eye of the butterfly Papilio xuthus. J Neurosci 23:4527–4532PubMedGoogle Scholar
  2. Arikawa K, Wakakuwa M, Qiu XD, Kurasawa M, Stavenga DG (2005) Sexual dimorphism of short-wavelength photoreceptors in the small white butterfly, Pieris rapae crucivora. J Neurosci 25:5935–5942PubMedCrossRefGoogle Scholar
  3. Bernhardt P (2000) Convergent evolution and adaptive radiation of beetle-pollinated angiosperms. Plant Syst Evol 222:293–320CrossRefGoogle Scholar
  4. Bernhardt P, Thien LB (1987) Self-isolation and insect pollination in the primitive angiosperms: new evaluations of older hypotheses. Plant Syst Evol 156:159–176CrossRefGoogle Scholar
  5. Briscoe AD (2000) Six opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects. J Mol Evol 51:110–121PubMedGoogle Scholar
  6. Briscoe AD (2002) Homology modeling suggests a functional role for parallel amino acid substitutions between bee and butterfly red- and green-sensitive opsins. Mol Biol Evol 19:983–986PubMedCrossRefGoogle Scholar
  7. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510PubMedCrossRefGoogle Scholar
  8. Chittka L (1996) Does bee color vision predate the evolution of flower color? Naturwissenschaften 83:136–138CrossRefGoogle Scholar
  9. Chittka L, Menzel R (1992) The evolutionary adaptation of flower colors and the insect pollinators color-vision. J Comp Physiol A 171:171–181CrossRefGoogle Scholar
  10. Correira MCR, Ormond WT, Pinheiro MCB, de Lima HA (1993) Study of the floral biology of Clusia criuva Camb.: a case of mimicry. Bradea 6:209–220Google Scholar
  11. Crepet WL (1983) The role of insect pollination in the evolution of the angiosperms. In: Real L (ed) Pollination biology. Academic Press, Orlando, pp 29–50Google Scholar
  12. Crepet WL (1984) Advanced (constant) insect pollination mechanisms: pattern of evolution and implications vis-à-vis angiosperm diversity. Ann Mo Bot Gard 71:607–630CrossRefGoogle Scholar
  13. Cronin TW, Järvilehto M, Weckström M, Lall AB (2000) Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae). J Comp Physiol A 186:1–12PubMedCrossRefGoogle Scholar
  14. Dacke M, Nordström P, Scholtz CH, Warrant EJ (2002) A specialized dorsal rim area for polarized light detection in the compound eye of the scarab beetle Pachysoma striatum. J Comp Physiol A 188:211–216CrossRefGoogle Scholar
  15. Dafni A, Bernhardt P, Shmida A, Ivri Y, Greenbaum S (1990) Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region. Isr J Bot 39:81–92Google Scholar
  16. Doring TF, Skorupski P (2007) Host and non-host leaves in the colour space of the Colorado potato beetle (Coleoptera: Chrysomelidae). Entomol Gen 29:81–95Google Scholar
  17. Endress PK (1987) The early evolution of the angiosperm flower. Trends Ecol Evol 2:300–304PubMedCrossRefGoogle Scholar
  18. Englund R (1993) Movement patterns of Cetonia beetles (Scarabaeidae) among flowering Viburnum opulus (Caprifoliaceae): option for long-distance pollen dispersal in a temperate shrub. Oecologia 94:295–302CrossRefGoogle Scholar
  19. Eriksson R (1994) The remarkable weevil pollination of the neotropical Carludovicoideae (Cyclanthaceae). Plant Syst Evol 189:75–81CrossRefGoogle Scholar
  20. Fægri K, van der Pijl L (1979) The principles of pollination ecology, 3rd edn. Pergamon Press, OxfordGoogle Scholar
  21. Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403CrossRefGoogle Scholar
  22. Frederiksen R, Wcislo WT, Warrant EJ (2008) Visual reliability and information rate in the retina of a nocturnal bee. Curr Biol 18:349–353PubMedCrossRefGoogle Scholar
  23. Gibernau M, Barabe D, Cerdan P, Dejean A (1999) Beetle pollination of Philodendron solimoesense (Araceae) in French Guiana. Int J Plant Sci 160:1135–1143PubMedCrossRefGoogle Scholar
  24. Gilbert LE, Raven PH (1975) Coevolution of animals and plants. University of Texas Press, AustinGoogle Scholar
  25. Gottsberger G (1989) Beetle pollination and flowering rhythm of Annona spp (Annonaceae) in Brazil. Plant Syst Evol 167:165–187CrossRefGoogle Scholar
  26. Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Vis Neurosci 17:509–528PubMedCrossRefGoogle Scholar
  27. Grant V (1950) The protection of the ovules in flowering plants. Evolution 4:179–201CrossRefGoogle Scholar
  28. Grant V (1994) Modes and origins of mechanical and ethological isolation in angiosperms. Proc Natl Acad Sci USA 91:3–10PubMedCrossRefGoogle Scholar
  29. Gribakin FG (1981) Automatic spectrosensitometry of photoreceptors in Lethrus (Coleoptera, Scarabaeidae). J Comp Physiol A 142:95–102CrossRefGoogle Scholar
  30. Hasselmann EM (1962) Über die relative spektrale Empfindlichkeit von Käfer—und Schmetterlingsaugen bei verschiedenen Helligkeiten. Zool Jahrb Abt Allg Zool Physiol Tiere 69:537–546Google Scholar
  31. Hawkeswood TJ (1990) Insect pollination of Bursaria spinosa (Pittosporaceae) in the Armidale area, New South Wales, Australia. G Ital Entomol 5:67–88Google Scholar
  32. Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John OS, Wild R, Hammond PM, Ahrens D, Balke M, Caterino MS, Gómez-Zurita J, Ribera I, Barraclough TG, Bocakova M, Bocak L, Vogler AP (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913–1916PubMedCrossRefGoogle Scholar
  33. Jackowska M, Bao R, Liu Z, McDonald E, Cook T, Friedrich M (2007) Genomic and gene regulatory signatures of cryptozoic adaptation: loss of blue sensitive photoreceptors through expansion of long wavelength-opsin expression in the red flour beetle Tribolium castaneum. Front Zool 4:24PubMedCrossRefGoogle Scholar
  34. Keasar T, Harari AR, Sabatinelli G, Keith D, Dafni A, Shavit O, Zylbertal A, Shmida A (2010) Red anemone guild flowers as focal places for mating and feeding by Levant glaphyrid beetles. Biol J Linn Soc 99:808–817CrossRefGoogle Scholar
  35. Kelber A, Vorobyev M, Osorio D (2003) Animal colour vision: behavioural tests and physiological concepts. Biol Rev Camb Philos Soc 78:81–118PubMedCrossRefGoogle Scholar
  36. Koshitaka H, Kinoshita M, Vorobyev M, Arikawa K (2008) Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc R Soc Biol Sci Ser B 275:947–954CrossRefGoogle Scholar
  37. Lall AB, Lord ET, Trouth CO (1982) Vision in the firefly Photuris lucicrescens (Coleoptera: Lampyridae): spectral sensitivity and selective adaptation in the compound eye. J Comp Physiol A 147:195–200CrossRefGoogle Scholar
  38. Lall AB, Cronin TW, Carvalho AA, de Souza JM, Barros MP, Stevani CV, Bechara EJH, Ventura DF, Viviani VR, Hill AA (2010) Vision in click beetles (Coleoptera: Elateridae): pigments and spectral correspondence between visual sensitivity and species bioluminescence emission. J Comp Physiol A 196:629–638CrossRefGoogle Scholar
  39. Laughlin SB (1981) Neural principles in the peripheral visual systems of invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII. Comparative physiology and evolution of vision in invertebrates. Springer, New YorkGoogle Scholar
  40. Lin J-T (1993) Identification of photoreceptor locations in the compound eye of Coccinella septempunctata Linnaeus (Coleoptera, Coccinellidae). J Insect Physiol 39:555–562CrossRefGoogle Scholar
  41. Lin JT, Wu CY (1992) A comparative study on the color vision of 4 coleopteran insects. Bull Inst Zool Acad Sin (Taipei) 31:81–88Google Scholar
  42. Maksimovic S, Layne JE, Buschbeck EK (2011) Spectral sensitivity of the principal eyes of sunburst diving beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae), larvae. J Exp Biol 214:3524–3531PubMedCrossRefGoogle Scholar
  43. Martínez-Harms J, Palacios AG, Marquez N, Estay P, Arroyo MTK, Mpodozis J (2010) Can red flowers be conspicuous to bees? Bombus dahlbomii and South American temperate forest flowers as a case in point. J Exp Biol 213:564–571PubMedCrossRefGoogle Scholar
  44. Maturana-Romesin H, Mpodozis J (2000) The origin of species by means of natural drift. Rev Chil Hist Nat 73:261–310CrossRefGoogle Scholar
  45. Mawdsley JR (2003) The importance of species of Dasytinae (Coleoptera: Melyridae) as pollinators in western North America. Coleopt Bull 57:154–160CrossRefGoogle Scholar
  46. Mazokhin-Porshnyakov GA (1962) Color vision in flower beetles (Coleoptera, Cetoniini). Sov Phys Dokl 7:362Google Scholar
  47. Menzel R (1979) Spectral sensitivity and colour vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6A. Comparative physiology and evolution of vision in invertebrates. Springer, Berlin, pp 503–580CrossRefGoogle Scholar
  48. Menzel R, Blakers M (1976) Color receptors in bee eye: morphology and spectral sensitivity. J Comp Physiol 108:11–33CrossRefGoogle Scholar
  49. Menzel R, Shmida A (1993) The ecology of flower colors and the natural color vision of insect pollinators: the Israeli flora as a study case. Biol Rev Camb Philos Soc 68:81–120Google Scholar
  50. Menzel R, Snyder AW (1975) Introduction to photoreceptor optics: an overview. In: Snyder AW, Menzel R (eds) Photoreceptor optics. Springer, Berlin, pp 1–13CrossRefGoogle Scholar
  51. Menzel R, Ventura DF, Hertel H, Desouza JM, Greggers U (1986) Spectral sensitivity of photoreceptors in insect compound eyes: comparison of species and methods. J Comp Physiol A 158:165–177CrossRefGoogle Scholar
  52. Nikolajev G, Ren D (2011) The oldest species of the genus Glaphyrus Latr. (Coleoptera: Scarabaeoidea: Glaphyridae) from the Mesozoic of China. Paleontol J 45:179–182CrossRefGoogle Scholar
  53. Ollerton J (1996) Reconciling ecological processes with phylogenetic patterns: the apparent paradox of plant–pollinator systems. J Ecol 84:767–769CrossRefGoogle Scholar
  54. Peitsch D, Fietz A, Hertel H, Desouza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based color vision. J Comp Physiol A 170:23–40PubMedCrossRefGoogle Scholar
  55. Pellmyr O, Patt JM (1986) Function of olfactory and visual stimuli in pollination of Lysichiton americanum (Araceae) by a staphylinid beetle. Madrono 33:47–54Google Scholar
  56. Qiu XD, Arikawa K (2003) Polymorphism of red receptors: sensitivity spectra of proximal photoreceptors in the small white butterfly Pieris rapae crucivora. J Exp Biol 206:2787–2793PubMedCrossRefGoogle Scholar
  57. Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, Bucher G, Friedrich M, Grimmelikhuijzen CJP, Klingler M, Lorenzen M, Roth S, Schroder R, Tautz D, Zdobnov EM (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955PubMedCrossRefGoogle Scholar
  58. Sakai S, Inoue T (1999) A new pollination system: Dung-beetle pollination discovered in Orchidantha inouei (Lowiaceae, Zingiberales) in Sarawak, Malaysia. Am J Bot 86:56–61PubMedCrossRefGoogle Scholar
  59. Sakai S, Momose K, Yumoto T, Kato M, Inoue T (1999) Beetle pollination of Shorea parvifolia (section Mutica, Dipterocarpaceae) in a general flowering period in Sarawak, Malaysia. Am J Bot 86:62–69PubMedCrossRefGoogle Scholar
  60. Singer RB, Cocucci AA (1997) Pollination of Pteroglossapis ruwenzoriensis (Rendle) Rolfe (Orchidaceae) by beetles in Argentina. Bot Acta 110:338–342Google Scholar
  61. Skorupski P, Doring TF, Chittka L (2007) Photoreceptor spectral sensitivity in island and mainland populations of the bumblebee, Bombus terrestris. J Comp Physiol A 193:485–494CrossRefGoogle Scholar
  62. Spaethe J, Briscoe AD (2004) Early duplication and functional diversification of the opsin gene family in insects. Mol Biol Evol 21:1583–1594PubMedCrossRefGoogle Scholar
  63. Stavenga DG, Arikawa K (2006) Evolution of color and vision of butterflies. Arthropod Struct Dev 35:307–318PubMedCrossRefGoogle Scholar
  64. Stavenga D, Arikawa K (2011) Photoreceptor spectral sensitivities of the small white butterfly Pieris rapae crucivora interpreted with optical modeling. J Comp Physiol A 197:373–385CrossRefGoogle Scholar
  65. Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Annu Rev Ecol Syst 1:307–326CrossRefGoogle Scholar
  66. Steiner KE (1998) The evolution of beetle pollination in a South African orchid. Am J Bot 85:1180–1193PubMedCrossRefGoogle Scholar
  67. Szel A, Lukats A, Fekete T, Szepessy Z, Rohlich P (2000) Photoreceptor distribution in the retinas of subprimate mammals. J Opt Soc Am A Opt Image Sci Vis 17:568–579PubMedCrossRefGoogle Scholar
  68. Takhtajan A (1991) Evolutionary trends in flowering plants. Columbia University Press, New YorkGoogle Scholar
  69. Thien LB, Bernhardt P, Devall MS, Chen ZD, Luo YB, Fan JH, Yuan LC, Williams JH (2009) Pollination biology of basal angiosperms (ANITA grade). Am J Bot 96:166–182PubMedCrossRefGoogle Scholar
  70. van der Pijl L (1960) Ecological aspects of flower evolution. I. Phyletic evolution. Evolution 14:403–416CrossRefGoogle Scholar
  71. van Kleunen M, Nanni I, Donaldson JS, Manning JC (2007) The role of beetle marks and flower colour on visitation by monkey beetles (Hopliini) in the greater Cape floral region, South Africa. Ann Bot (Lond) 100:1483–1489CrossRefGoogle Scholar
  72. Vorobyev M, Brandt R (1997) How do insect pollinators discriminate colors? Isr J Plant Sci 45:103–113Google Scholar
  73. Vorobyev M, Menzel R (1999) Flower advertisement for insects: bees, as case study. In: Archer S, Djamgoz MB, Loew E, Partridge JC, Vallerga S (eds) Adaptive mechanisms in the ecology of vision. Kluwer Academic Publishers, London, pp 537–553Google Scholar
  74. Vorobyev M, Osorio D (1998) Receptor noise as a determinant of colour thresholds. Proc R Soc Biol Sci Ser B 265:351–358CrossRefGoogle Scholar
  75. Vorobyev M, Brandt R, Peitsch D, Laughlin SB, Menzel R (2001a) Colour thresholds and receptor noise: behaviour and physiology compared. Vision Res 41:639–653PubMedCrossRefGoogle Scholar
  76. Vorobyev M, Marshall J, Osorio D, Hempel de Ibarra N, Menzel R (2001b) Colourful objects through animal eyes. Color Res Appl 26:S214–S217CrossRefGoogle Scholar
  77. Wakakuwa M, Stavenga DG, Kurasawa M, Arikawa K (2004) A unique visual pigment expressed in green, red and deep-red receptors in the eye of the small white butterfly, Pieris rapae crucivora. J Exp Biol 207:2803–2810PubMedCrossRefGoogle Scholar
  78. Warrant EJ, McIntyre PD (1990) Limitations to resolution in superposition eyes. J Comp Physiol A 167:785–803Google Scholar
  79. Waser NM (1998) Pollination, angiosperm speciation, and the nature of species boundaries. Oikos 82:198–201CrossRefGoogle Scholar
  80. Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996) Generalization in pollination systems, and why it matters. Ecology 77:1043–1060CrossRefGoogle Scholar
  81. Wyszecki G, Stiles WS (1982) Color science: concepts and methods, quantitative data and formulae, 2nd edn. Wiley, New YorkGoogle Scholar
  82. Young HJ (1986) Beetle pollination of Dieffenbachia longispatha (Araceae). Am J Bot 73:931–944CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • J. Martínez-Harms
    • 1
  • M. Vorobyev
    • 2
  • J. Schorn
    • 1
  • A. Shmida
    • 3
  • T. Keasar
    • 4
  • U. Homberg
    • 5
  • F. Schmeling
    • 5
  • R. Menzel
    • 1
  1. 1.FU Biologie, Institut für Biologie-NeurobiologieFreie Universität BerlinBerlinGermany
  2. 2.Department of Optometry and Vision ScienceUniversity of AucklandAucklandNew Zealand
  3. 3.Department of Ecology, Evolution and Behavior, Center for the Study of RationalityThe Hebrew UniversityJerusalemIsrael
  4. 4.Department of Biology and EnvironmentUniversity of Haifa-OranimTivonIsrael
  5. 5.Fachbereich Biologie-Neurobiologie/EthologiePhilipps-Universität MarburgMarburgGermany

Personalised recommendations