Journal of Comparative Physiology A

, Volume 198, Issue 6, pp 427–449 | Cite as

Adult neurogenesis in the brain of the Mozambique tilapia, Oreochromis mossambicus

  • Magda C. Teles
  • Ruxandra F. Sîrbulescu
  • Ursula M. Wellbrock
  • Rui F. Oliveira
  • Günther K. H. Zupanc
Original Paper


Although the generation of new neurons in the adult nervous system (‘adult neurogenesis’) has been studied intensively in recent years, little is known about this phenomenon in non-mammalian vertebrates. Here, we examined the generation, migration, and differentiation of new neurons and glial cells in the Mozambique tilapia (Oreochromis mossambicus), a representative of one of the largest vertebrate taxonomic orders, the perciform fish. The vast majority of new cells in the brain are born in specific proliferation zones of the olfactory bulb; the dorsal and ventral telencephalon; the periventricular nucleus of the posterior tuberculum, optic tectum, and nucleus recessi lateralis of the diencephalon; and the valvula cerebelli, corpus cerebelli, and lobus caudalis of the cerebellum. As shown in the olfactory bulb and the lateral part of the valvula cerebelli, some of the young cells migrate from their site of origin to specific target areas. Labeling of mitotic cells with the thymidine analog 5-bromo-2′-deoxyuridine, combined with immunostaining against the neuron-specific marker protein Hu or against the astroglial marker glial fibrillary acidic protein demonstrated differentiation of the adult-born cells into both neurons and glia. Taken together, the present investigation supports the hypothesis that adult neurogenesis is an evolutionarily conserved vertebrate trait.


Teleosts Perciformes Olfactory bulb Hippocampus Cerebellum 



Anterior thalamic nucleus


Anterior commissure


Olfactory bulb


Glomerular layer of the olfactory bulb


Granular layer of the olfactory bulb


Blood vessel


Crista cerebellaris


Corpus cerebelli


Granular layer of corpus cerebelli


Molecular layer of corpus cerebelli


Central nucleus of the inferior lobe


Horizontal commissure


Corpus mamillare


Central posterior thalamic nucleus


Ventral rhombencephalic commissure


Dorsal telencephalon


Anterior part of the dorsal telencephalon


Dorsocentral telencephalon


Anterior subdivision of the dorsal central telencephalon


Dorsal part of the anterior subdivision of the dorsocentral telencephalon


Medial subdivision of the dorsocentral telencephalon


Dorsal division of the dorsal telencephalon


Nucleus diffusus lateralis of the inferior lobe


Dorsal subdivision of nucleus diffusus lateralis of the inferior lobe


Ventral subdivision of nucleus diffusus lateralis of the inferior lobe


Nucleus diffusus medialis of the inferior lobe


Dorsolateral telencephalon


Anterior subdivision of the dorsolateral telencephalon


Dorsal subdivision of the dosolateral telencephalon


Posterior subdivision of the dorsolateral telencephalon


Ventral subdivision of the dorsolateral telencephalon


Dorsomedial telencephalon


Anterior subdivision of the dorsomedial telencephalon


Dorsal part of the dorsal subdivision of the dorsomedial telencephalon


Ventral part of the dorsal subdivision of the dorsomedial telencephalon


Ventral subdivision of the dorsomedial telencephalon


Dorsal part of the ventral subdivision of the dorsomedial telencephalon


Ventral part of the ventral subdivision of the dorsomedial telencephalon


Dorsal posterior thalamic nucleus


Posterior part of dorsal telencephalon


Eminentia granularis


Glomerular nucleus


Central gray




Ventral zone of the periventricular hypothalamus


Inferior lobe of the hypothalamus


Dorsolateral subdivision of the inferior lobe of the hypothalamus


Ventromedial subdivision of the inferior lobe of the hypothalamus


Interpeduncular nucleus


Lobus caudalis


Granular layer of the lobus caudalis


Lateral hypothalamic nucleus


Lobus facialis


Lobus vagi


Medial longitudinal fascicle


Molecular layer


Nucleus oculomotorius


Nucleus recessi lateralis


Lateral part of the nucleus recessi lateralis


Medial part of the nucleus recessi lateralis


Nucleus recessi posterioris


Descending trigeminal nucleus


Nucleus X (unidentified nucleus located between tOv and DFld)


Preoptic region


Medial part of the preglomerular nucleus


Periventricular preoptic nucleus


Anterior part of the periventricular preoptic nucleus


Medial part of the periventricular preoptic nucleus


Posterior part of the periventricular preoptic nucleus


Recessus lateralis


Recessus posterioris


Rhombencephalic ventricle


Suprachiasmatic nucleus


Nucleus anterior tuberis


Optic tectum


Tertiary gustatory nucleus


Lateral part of the tertiary gustatory nucleus


Medial part of the tertiary gustatory nucleus


Torus longitudinalis


Torus lateralis


Inferior subdivision of the torus lateralis


Optic tract


Tractus opticus dorsalis


Medial part of the olfactory tract


Tractus opticus ventralis


Nucleus of the posterior tuberculum


Periventricular nucleus of the posterior tuberculum


Torus semicircularis


Tractus tecto-bulbaris


Ventral telencephalon




Lateral part of valvula cerebelli


Granular layer of the lateral part of valvula cerebelli


Molecular layer of the lateral part of the valvula cerebelli


Medial part of valvula cerebelli


Granular layer of the medial part of the valvula cerebelli


Molecular layer of the medial part of the valvula cerebelli


Dorsal part of the ventral telencephalon


Ventrolateral rhombencephalon


Ventromedial thalamic nucleus


Supracommissural part of the ventral telencephalon


Medial part of the ventral subdivision of the ventral telencephalon



We thank Iulian Ilieş for helpful comments on a previous version of the manuscript. This study was funded by Tönjes-Vagt-Stiftung and Deutscher Akademischer Austauschdienst (to G.K.H.Z.); Gabinete de Relações Internacionais da Ciência e do Ensino Superior German-Portuguese exchange grant and Fundação Portuguesa para a Ciência e a Tecnologia research grant # PTDC/PSI/71811/2006 (to R.F.O.); and Ph.D.fellowship # SFRH/BD/44848/2008 (to M.C.T.). All experiments were carried out in accordance with the relevant law, the Deutsches Tierschutzgesetz of 1998.


  1. Alonso JR, Lara J, Vecino E, Coveñas R, Aijón J (1989) Cell proliferation in the olfactory bulb of adult freshwater teleosts. J Anat 163:155–163PubMedGoogle Scholar
  2. Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis: IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–458PubMedCrossRefGoogle Scholar
  3. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–336PubMedCrossRefGoogle Scholar
  4. Alunni A, Hermel JM, Heuzé A, Bourrat F, Jamen F, Joly JS (2010) Evidence for neural stem cells in the medaka optic tectum proliferation zones. Dev Neurobiol 70:693–713PubMedCrossRefGoogle Scholar
  5. Baerends GP, Baerends van Roon JM (1950) An introduction to the study of cichlid fishes. Behaviour Suppl 1:1–242Google Scholar
  6. Barnea A, Nottebohm F (1994) Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proc Natl Acad Sci USA 91:11217–11221PubMedCrossRefGoogle Scholar
  7. Bédard A, Parent A (2004) Evidence of newly generated neurons in the human olfactory bulb. Dev Brain Res 151:159–168CrossRefGoogle Scholar
  8. Bonfanti L, Rossi F, Zupanc GKH (2011) Towards a comparative understanding of adult neurogenesis. Eur J Neurosci 34:845–846PubMedCrossRefGoogle Scholar
  9. Braford MR (1995) Comparative aspects of forebrain organization in the ray-finned fishes: touchstones or not? Brain Behav Evol 46:259–274PubMedCrossRefGoogle Scholar
  10. Butler AB (2000) Topography and topology of the teleost telencephalon: a paradoxon resolved. Neurosci Lett 293:95–98PubMedCrossRefGoogle Scholar
  11. Byrd CA, Brunjes PC (2001) Neurogenesis in the olfactory bulb of adult zebrafish. Neuroscience 105:793–801PubMedCrossRefGoogle Scholar
  12. Chapouton P, Webb KJ, Stigloher C, Alunni A, Adolf B, Hesl B, Topp S, Kremmer E, Bally-Cuif L (2011) Expression of hairy/enhancer of split genes in neural progenitors and neurogenesis domains of the adult zebrafish brain. J Comp Neurol 519:1748–1769PubMedCrossRefGoogle Scholar
  13. Clint SC, Zupanc GKH (2001) Neuronal regeneration in the cerebellum of adult teleost fish, Apteronotus leptorhynchus: guidance of migrating young cells by radial glia. Dev Brain Res 130:15–23CrossRefGoogle Scholar
  14. Corotto FS, Henegar JA, Maruniak JA (1993) Neurogenesis persists in the subependymal layer of the adult mouse brain. Neurosci Lett 149:111–114PubMedCrossRefGoogle Scholar
  15. Corwin JT (1981) Postembryonic production and aging of inner ear hair cells in sharks. J Comp Neurol 201:541–553PubMedCrossRefGoogle Scholar
  16. Curtis MA, Kam M, Nannmark U, Anderson MF, Axell MZ, Wikkelso C, Holtas S, van Roon-Mom WMC, Björk-Eriksson T, Nordborg C, Frisén J, Dragunow M, Faull RLM, Eriksson PS (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249PubMedCrossRefGoogle Scholar
  17. Ekström P, Johnsson C-M, Ohlin L-M (2001) Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J Comp Neurol 436:92–110PubMedCrossRefGoogle Scholar
  18. Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969–2000). Neurochem Res 25:1439–1451PubMedCrossRefGoogle Scholar
  19. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317PubMedCrossRefGoogle Scholar
  20. Fernández AS, Rosillo JC, Casanova G, Olivera-Bravo S (2011) Proliferation zones in the brain of adult fish Austrolebias (Cyprinodontiform[sic]: Rivulidae): a comparative study. Neuroscience 189:12–24PubMedCrossRefGoogle Scholar
  21. Fine ML (1989) Embryonic, larval and adult development of the sonic neuromuscular system in the oyster toadfish. Brain Behav Evol 34:13–24PubMedCrossRefGoogle Scholar
  22. Gage FH, Kempermann G, Song H (eds) (2008) Adult Neurogenesis. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  23. Ganz J, Kaslin J, Hochmann S, Freudenreich D, Brand M (2010) Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon. Glia 58:1345–1363PubMedGoogle Scholar
  24. Gould E, Reeves AJ, Fallah M, Tanapat P, Gross CG, Fuchs E (1999) Hippocampal neurogenesis in adult Old World primates. Proc Natl Acad Sci USA 96:5263–5267PubMedCrossRefGoogle Scholar
  25. Grandel H, Kaslin J, Ganz J, Wenzel I, Brand M (2006) Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev Biol 295:263–277PubMedCrossRefGoogle Scholar
  26. Higgs DM, Souza MJ, Wilkins HR, Presson JC, Popper AN (2002) Age- and size-related changes in the inner ear and hearing ability of the adult zebrafish (Danio rerio). J Assoc Res Otolaryngol 3:174–184PubMedCrossRefGoogle Scholar
  27. Hinsch K, Zupanc GKH (2007) Generation and long-term persistence of new neurons in the adult zebrafish brain: a quantitative analysis. Neuroscience 146:679–696PubMedCrossRefGoogle Scholar
  28. Janssen J, Coombs S, Hoekstra D, Platt C (1987) Anatomy and differential growth of the lateral line system of the mottled sculpin, Cottus bairdi (Scorpaeniformes: Cottidae). Brain Behav Evol 30:210–229PubMedGoogle Scholar
  29. Johns PR, Easter SSJ (1977) Growth of the adult goldfish eye: II. Increase in retinal cell number. J Comp Neurol 176:331–342PubMedCrossRefGoogle Scholar
  30. Kaplan MS, Bell DH (1984) Mitotic neuroblasts in the 9-day-old and 11-month-old rodent hippocampus. J Neurosci 4:1429–1441PubMedGoogle Scholar
  31. Kaplan MS, McNelly NA, Hinds JW (1985) Population dynamics of adult-formed granule neurons of the rat olfactory bulb. J Comp Neurol 239:117–125PubMedCrossRefGoogle Scholar
  32. Kaslin J, Ganz J, Geffarth M, Grandel H, Hans S, Brand M (2009) Stem cells in the adult zebrafish cerebellum: initiation and maintenance of a novel stem cell niche. J Neurosci 29:6142–6153PubMedCrossRefGoogle Scholar
  33. Kempermann G (2011) Adult Neurogenesis. Oxford University Press, New YorkGoogle Scholar
  34. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development 130:391–399PubMedCrossRefGoogle Scholar
  35. Kornack DR, Rakic P (1999) Continuation of neurogenesis in the hippocampus of the adult macaque monkey. Proc Natl Acad Sci USA 96:5768–5773PubMedCrossRefGoogle Scholar
  36. Koumans JTM, Akster HA (1995) Myogenic cells in development and growth of fish. Comp Biochem Physiol 110A:3–20CrossRefGoogle Scholar
  37. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148PubMedCrossRefGoogle Scholar
  38. Lois C, García-Verdugo JM, Alvarez-Buylla A (1996) Chain migration of neuronal precursors. Science 271:978–981PubMedCrossRefGoogle Scholar
  39. Lopez-Garcia C, Molowny A, Garcia-Verdugo JM, Ferrer I (1988) Delayed postnatal neurogenesis in the cerebral cortex of lizards. Dev Brain Res 471:167–174CrossRefGoogle Scholar
  40. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons from the forebrain subventricular zone. Neuron 11:173–189PubMedCrossRefGoogle Scholar
  41. Marusich MF, Weston JA (1992) Identification of early neurogenic cells in the neural crest lineage. Dev Biol 149:295–306PubMedCrossRefGoogle Scholar
  42. Nieuwenhuys R (2011) The development and general morphology of the telencephalon of actinopterygian fishes: synopsis, documentation and commentary. Brain Struct Funct 215:141–157PubMedCrossRefGoogle Scholar
  43. Nieuwenhuys R, Meek J (1990) The telencephalon of actinopterygian fishes. In: Jones EG, Peters A (eds) Comparative structure and evolution of the cerebral cortex. Plenum, New York, pp 31–73Google Scholar
  44. Northcutt RG (1995) The forebrain of gnathostomes: in search of a morphotype. Brain Behav Evol 46:275–318PubMedCrossRefGoogle Scholar
  45. Northcutt RG, Braford MR (1980) New observations on the organization and evolution of the telencephalon of actinopterygian fishes. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum, New York, pp 41–98CrossRefGoogle Scholar
  46. Oliveira RF (2009) Social behavior in context: hormonal modulation of behavioral plasticity and social competence. Integr Comp Biol 49:423–440PubMedCrossRefGoogle Scholar
  47. Oliveira RF, Canário AVM (2001) Hormones and social behaviour in cichlid fishes: a case study in the Mozambique tilapia. In: Coleman RM (ed) Cichlid research: state of the art special issue of the J Aquaricult Aquat Sci 9:109–129. John Farrell Kuhns, ParkvilleGoogle Scholar
  48. Ott R, Zupanc GKH, Horschke I (1997) Long-term survival of postembryonically born cells in the cerebellum of gymnotiform fish, Apteronotus leptorhynchus. Neurosci Lett 221:185–188PubMedCrossRefGoogle Scholar
  49. Pellegrini E, Mouriec K, Anglade I, Menuet A, Le Page Y, Gueguen MM, Marmignon MH, Brion F, Pakdel F, Kah O (2007) Identification of aromatase-positive radial glial cells as progenitor cells in the ventricular layer of the forebrain in zebrafish. J Comp Neurol 501:150–167PubMedCrossRefGoogle Scholar
  50. Pencea V, Bingaman KD, Freedman LJ, Luskin MB (2001) Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol 172:1–16PubMedCrossRefGoogle Scholar
  51. Pepels PPLM, Meek J, Wendelaar Bonga SE, Balm PHM (2002) Distribution and quantification of corticotropin-releasing hormone (CRH) in the brain of the teleost fish Oreochromis mossambicus (tilapia). J Comp Neurol 453:247–268PubMedCrossRefGoogle Scholar
  52. Portavella M, Torres B, Salas C (2004) Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci 24:2335–2342PubMedCrossRefGoogle Scholar
  53. Raymond PA, Easter SS Jr, Burnham JA, Powers MK (1983) Postembryonic growth of the optic tectum in goldfish. II. Modulation of cell proliferation by retinal fiber input. J Neurosci 3:1092–1099PubMedGoogle Scholar
  54. Rodríguez F, López JC, Vargas JP, Gómez Y, Broglio C, Salas C (2002) Conservation of spatial memory function in the pallial forebrain of reptiles and ray-finned fishes. J Neurosci 22:2894–2903PubMedGoogle Scholar
  55. Rothenaigner I, Krecsmarik M, Hayes JA, Bahn B, Lepier A, Fortin G, Gotz M, Jagasia R, Bally-Cuif L (2011) Clonal analysis by distinct viral vectors identifies bona fide neural stem cells in the adult zebrafish telencephalon and characterizes their division properties and fate. Development 138:1459–1469PubMedCrossRefGoogle Scholar
  56. Rowe RWD, Goldspink G (1969) Muscle fibre growth in five different muscles in both sexes of mice. J Anat 104:519–530PubMedGoogle Scholar
  57. Rowlerson A, Veggetti A (2001) Cellular mechanisms of post-embryonic muscle growth in aquaculture species. In: Johnston IA (ed) Muscle development and growth. Academic Press, San Diego, pp 103–140CrossRefGoogle Scholar
  58. Sanai N, Tramontin AD, Quinones-Hinojosa A, Barbaro NM, Gupta N, Kunwar S, Lawton MT, McDermott MW, Parsa AT, García-Verdugo JM, Berger MS, Alvarez-Buylla A (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744PubMedCrossRefGoogle Scholar
  59. Seri B, García-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160PubMedGoogle Scholar
  60. Sîrbulescu RF, Ilieş I, Zupanc GKH (2009) Structural and functional regeneration after spinal cord injury in the weakly electric teleost fish, Apteronotus leptorhynchus. J Comp Physiol A 195:699–714CrossRefGoogle Scholar
  61. Soutschek J, Zupanc GKH (1996) Apoptosis in the cerebellum of adult teleost fish, Apteronotus leptorhynchus. Dev Brain Res 97:279–286CrossRefGoogle Scholar
  62. Takeda A, Nakano M, Goris RC, Funakoshi K (2008) Adult neurogenesis with 5-HT expression in lesioned goldfish spinal cord. Neuroscience 151:1132–1141PubMedCrossRefGoogle Scholar
  63. Vargas JP, Rodríguez F, López JC, Arias JL, Salas C (2000) Spatial learning-induced increase in the argyophilic nucleolar organizer region of dorsolateral telencephalic neurons in goldfish. Brain Res 865:77–84PubMedCrossRefGoogle Scholar
  64. Watanabe WO, Losordo TM, Fitzsimmons K, Hanley F (2002) Tilapia production in the Americas: technological advances, trends, and challenges. Rev Fish Sci 10:465–498CrossRefGoogle Scholar
  65. Weatherley AH, Gill HS (1985) Dynamics of increase in muscle fibres in fishes in relation to size and growth. Experientia 41:353–354CrossRefGoogle Scholar
  66. Winner B, Cooper-Kuhn CM, Aigner R, Winkler J, Kuhn HG (2002) Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci 16:1681–1689PubMedCrossRefGoogle Scholar
  67. Zakon HH (1984) Postembryonic changes in the peripheral electrosensory system of a weakly electric fish: addition of receptor organs with age. J Comp Neurol 228:557–570PubMedCrossRefGoogle Scholar
  68. Zimmerman AM, Lowery MS (1999) Hyperplastic development and hypertrophic growth of muscle fibers in the white seabass (Atractoscion nobilis). J Exp Zool 284:299–308PubMedCrossRefGoogle Scholar
  69. Zupanc GKH (1999) Neurogenesis, cell death and regeneration in the adult gymnotiform brain. J Exp Biol 202:1435–1446PubMedGoogle Scholar
  70. Zupanc GKH (2006) Adult neurogenesis and neuronal regeneration in the teleost fish brain: implications for the evolution of a primitive vertebrate trait. In: Bullock TH, Rubenstein LR (eds) The evolution of nervous systems in non-mammalian vertebrates. Academic Press, Oxford, pp 485–520Google Scholar
  71. Zupanc GKH (2008a) Adult neurogenesis and neuronal regeneration in the brain of teleost fish. J Physiol Paris 102:357–373PubMedCrossRefGoogle Scholar
  72. Zupanc GKH (2008b) Adult neurogenesis in teleost fish. In: Gage FH, Kempermann G, Song H (eds) Adult neurogenesis. Cold Spring Harbor Laboratory Press, New York, pp 571–592Google Scholar
  73. Zupanc GKH (2009) Towards brain repair: insights from teleost fish. Semin Cell Dev Biol 20:683–690PubMedCrossRefGoogle Scholar
  74. Zupanc GKH (2011) Adult neurogenesis in teleost fish. In: Seki T, Sawamoto K, Parent JM, Alvarez-Buylla A (eds) Neurogenesis in the adult brain I. Springer, Tokyo, pp 137–168CrossRefGoogle Scholar
  75. Zupanc GKH, Horschke I (1995) Proliferation zones in the brain of adult gymnotiform fish: a quantitative mapping study. J Comp Neurol 353:213–233PubMedCrossRefGoogle Scholar
  76. Zupanc GKH, Horschke I, Ott R, Rascher GB (1996) Postembryonic development of the cerebellum in gymnotiform fish. J Comp Neurol 370:443–464PubMedCrossRefGoogle Scholar
  77. Zupanc GKH, Hinsch K, Gage FH (2005) Proliferation, migration, neuronal differentiation, and long-term survival of new cells in the adult zebrafish brain. J Comp Neurol 488:290–319PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Magda C. Teles
    • 1
    • 2
    • 3
  • Ruxandra F. Sîrbulescu
    • 3
    • 4
  • Ursula M. Wellbrock
    • 3
  • Rui F. Oliveira
    • 1
    • 2
  • Günther K. H. Zupanc
    • 3
    • 4
  1. 1.Unidade de Investigação em Eco-EtologiaInstituto Superior de Psicologia AplicadaLisbonPortugal
  2. 2.Champalimaud Neuroscience ProgrammeInstituto Gulbenkian de CiênciaOeirasPortugal
  3. 3.School of Engineering and ScienceJacobs University BremenBremenGermany
  4. 4.Department of BiologyNortheastern UniversityBostonUSA

Personalised recommendations