Advertisement

Journal of Comparative Physiology A

, Volume 198, Issue 1, pp 69–77 | Cite as

Luminance-dependence of spatial vision in budgerigars (Melopsittacus undulatus) and Bourke’s parrots (Neopsephotus bourkii)

  • Olle LindEmail author
  • Tony Sunesson
  • Mindaugas Mitkus
  • Almut Kelber
Original Paper

Abstract

Budgerigars (Melopsittacus undulatus) and Bourke’s parrots (Neopsephotus bourkii) are closely related birds with different activity patterns. Budgerigars are strictly diurnal while Bourke’s parrots are active in dim twilight. Earlier studies show that the intensity threshold of colour vision is similar in both species while Bourke’s parrots have larger eyes with a higher density of rods than budgerigars. In this study, we investigate whether this could be an adaptation for better spatial vision in dim light. We used two alternative forced-choice experiments to determine the spatial acuity of both species at light intensities ranging from 0.08 to 73 cd/m2. We also determined the spatial contrast sensitivity function (CSF) for bright light in Bourke’s parrots and compare it to existing data for budgerigars. The spatial acuity of Bourke’s parrots was found to be similar to that of budgerigars at all light levels. Also the CSF of Bourke’s parrots is similar to that of budgerigars with a sensitivity peak located between 2.1 and 2.6 cycles/degree. Our findings do not support the hypothesis that Bourke’s parrots have superior spatial acuity in dim light compared to budgerigars and the adaptive value of the relatively rod-rich and large eyes of Bourke’s parrots remains unclear.

Keywords

Spatial vision Luminance-dependence Spatial contrast sensitivity Bird Dim light 

Notes

Acknowledgments

We would like to thank Stefan Sydoff and Per Vestergren for help with the experimental setup, and the Lund Vision Group for helpful discussions. We also thank the anonymous reviewers for helpful comments on the manuscript. Financial support from the Royal Physiographic Society in Lund, the Royal Swedish Academy of Sciences, and the Swedish Research Council, Stockholm (grants number 2006-4510, 2009-5683), is gratefully acknowledged. The animals were kept in conditions that followed the ethical guidelines from the Swedish Board of Agriculture and the same department approved the experiments (M18-07, M190-10).

Supplementary material

359_2011_689_MOESM1_ESM.pdf (29 kb)
Supplementary material 1 (PDF 23 kb)

References

  1. Birch D, Jacobs GH (1979) Spatial contrast sensitivity in albino and pigmented rats. Vision Res 19:933–937. doi: 10.1016/0042-6989(79)90029-4 PubMedCrossRefGoogle Scholar
  2. Bisti S, Maffei L (1974) Behavioural contrast sensitivity of the cat in various visual meridians. J Physiol 241:201–210PubMedGoogle Scholar
  3. Campbell FW, Robson JG (1968) Application of Fourier analysis to the visibility of gratings. J Physiol 197:551–556PubMedGoogle Scholar
  4. Collar NJ (1997) Family Psittacidae (parrots). In: Del Hoyo J, Elliott A, Sargatal J (eds) Handbook of the birds of the world, vol 4. Lynx Edicions, Barcelona, pp 280–477Google Scholar
  5. Collias NE, Collias EC (1967) A field study of the red jungle fowl in North-Central India. Condor 69:360–386CrossRefGoogle Scholar
  6. Davies SJJF (1972) Results of 40:h continuous watch at five waterpoints in an Australian desert. Emu 72:8–12CrossRefGoogle Scholar
  7. Donner KO (1951) The visual acuity of some passerine birds. Acta Zool Fenn 66:1–40Google Scholar
  8. De Valois RL, Morgan H (1974) Psychophysical studies of monkey vision-III. Spatial luminance contrast sensitivity tests of macaque and human observers. Vision Res 14:75–81. doi: 10.1016/0042-6989(74)90118-7 PubMedCrossRefGoogle Scholar
  9. Fisher CD, Lindgren E, Dawson WR (1972) Drinking patterns and behavior of Australian desert birds in relation to their ecology and abundance. Condor 74:111–136CrossRefGoogle Scholar
  10. Fite KV (1973) Anatomical and behavioral correlates of visual acuity in the Great Horned Owl. Vision Res 13:219–230. doi: 10.1016/0042-6989(73)90101-6 PubMedCrossRefGoogle Scholar
  11. Ghim MM, Hodos W (2006) Spatial contrast sensitivity of birds. J Comp Physiol A 192:523–534. doi: 10.1007/s00359-005-0090-5 CrossRefGoogle Scholar
  12. Gollisch T, Meister M (2010) Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65:150–164. doi: 10.1016/j.neuron.2009.12.009 PubMedCrossRefGoogle Scholar
  13. Gover N, Jarvis JR, Abeyesinghe SM, Wathes CM (2009) Stimulus luminance and the spatial acuity of domestic fowl (Gallus g. domesticus). Vision Res 49:2747–2753. doi: 10.1016/j.visres.2009.08.011 PubMedCrossRefGoogle Scholar
  14. Hanke FD, Scholtyssek C, Hanke W, Dehnhardt G (2011) Contrast sensitivity in a harbour seal (Phoca vitulina). J Comp Physiol A 197:203–210. doi: 10.1007/s00359-010-0600-y CrossRefGoogle Scholar
  15. Harmening WM, Nikolay P, Orlowski J, Wagner H (2009) Spatial contrast sensitivity and grating acuity of barn owls. J Vis 9(7):13. doi: 10.1167/9.7.13 Google Scholar
  16. Hirsch J (1982) Falcon visual sensitivity to grating contrast. Nature 300:57–58. doi: 10.1038/300057a0 CrossRefGoogle Scholar
  17. Hodos W, Ghim MM, Potocki A, Fields JN, Storm T (2002) Contrast sensitivity in pigeons: a comparison of behavioural and pattern ERG methods. Doc Ophthalmol 104:107–118. doi: 10.1023/A:1014427615636 PubMedCrossRefGoogle Scholar
  18. Hodos W, Leibowitz RW (1977) Near-field visual acuity of pigeons: Effects of scotopic adaptation and wavelength. Vision Res 17:463–467. doi: 10.1016/0042-6989(77)90040-2 PubMedCrossRefGoogle Scholar
  19. Hodos W, Leibowitz RW, Bonbright JC Jr (1976) Near-field visual acuity of pigeons: effects of head location and stimulus luminance. J Exp Anal Behav 25:129–141. doi: 10.1901/jeab.1976.25-129 PubMedCrossRefGoogle Scholar
  20. Huwaldt JA (2010) Plot Digitizer. Free software program used to digitize scanned plots. http://plotdigitizer.sourceforge.net/
  21. Jacobs GH (1977) Visual capacities of the owl monkey (Aotus trivirgatus)-II. Spatial contrast sensitivity. Vision Res 17:821–825. doi: 10.1016/0042-6989(77)90125-0 PubMedCrossRefGoogle Scholar
  22. Jacobs GH, Birch DG, Blakeslee B (1982) Visual acuity and spatial contrast sensitivity in tree squirrels. Behav Process 7:367–375. doi: 10.1016/0376-6357(82)90008-0 CrossRefGoogle Scholar
  23. Jacobs GH, Blakeslee B, McCourt ME, Tootell RBH (1980) Visual sensitivity of ground squirrels to spatial and temporal luminance variations. J Comp Physiol A 136:291–299. doi: 10.1007/BF00657349 CrossRefGoogle Scholar
  24. Jarvis JR, Siobhan MA, McMahon CE, Wathes CM (2009) Measuring and modelling the spatial sensitivity of the chicken (Gallus g. domesticus). Vision Res 49:1448–1454. doi: 10.1016/j.visres.2009.02.019 PubMedCrossRefGoogle Scholar
  25. Keller J, Strasburger H, Cerutti DT, Sabel BA (2000) Assessing spatial vision–automated measurement of the contrast-sensitivity function in the hooded rat. J Neurosci Meth 97:103–110. doi: 10.1016/S0165-0270(00)00173-4 CrossRefGoogle Scholar
  26. Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, OxfordGoogle Scholar
  27. Langston A, Casagrande VA, Fox R (1986) Spatial resolution of the galago. Vision Res 26:791–796. doi: 10.1016/0042-6989(86)90094-5 PubMedCrossRefGoogle Scholar
  28. Lind O, Kelber A (2009) The intensity threshold of colour vision in two species of parrot. J Exp Biol 212:3693–3699. doi: 10.1242/jeb.035477 PubMedCrossRefGoogle Scholar
  29. Lind O, Kelber A (2011) The spatial tuning of achromatic and chromatic vision in budgerigars. J Vis (accepted manuscript)Google Scholar
  30. MacGillivray W (1927) The charming Bourke parrot. Emu 27:65–67CrossRefGoogle Scholar
  31. Manglapus MK, Iuvone PM, Underwood H, Pierce ME, Barlow RB (1999) Dopamine mediates circadian rhythms of rod–cone dominance in the Japanese quail retina. J Neurosci 19:4132–4141PubMedGoogle Scholar
  32. Manglapus MK, Uchiyama H, Buelow NF, Barlow RB (1998) Circadian rhythms of rod–cone dominance in the Japanese quail retina. J Neurosci 18:4775–4784PubMedGoogle Scholar
  33. Martin G (1990) Birds by night. T & A D Poyser, LondonGoogle Scholar
  34. Martin GR, Gordon IE (1974) Visual acuity in the tawny owl (Strix aluco). Vision Res 14:1393–1397. doi: 10.1016/0042-6989(74)90014-5 PubMedCrossRefGoogle Scholar
  35. Martin GR, Osorio D (2008) Vision in Birds. In: Masland RH, Albright T (eds) The senses: a comprehensive reference, vol 2. Academic Press, San Diego, pp 25–52CrossRefGoogle Scholar
  36. Merigan WH (1976) The contrast sensitivity of the squirrel monkey (Saimiri sciureus). Vision Res 16:375–379. doi: 10.1016/0042-6989(76)90199-1 PubMedCrossRefGoogle Scholar
  37. Northmore DPM, Dvorak CA (1979) Contrast sensitivity and acuity of the goldfish. Vision Res 19:255–261. doi: 10.1016/0042-6989(79)90171-8 PubMedCrossRefGoogle Scholar
  38. Petry HM, Fox R, Casagrande VA (1984) Spatial contrast sensitivity of the tree shrew. Vision Res 24:1037–1042. doi: 10.1016/0042-6989(84)90080-4 PubMedCrossRefGoogle Scholar
  39. Reymond L (1985) Spatial visual acuity of the eagle, Aquila audax: a behavioural, optical and anatomical investigation. Vision Res 25:1477–1491. doi: 10.1016/0042-6989(85)90226-3 PubMedCrossRefGoogle Scholar
  40. Reymond L (1987) Spatial visual acuity of the falcon, Falco berigora: a behavioural, optical and anatomical investigation. Vision Res 27:1859–1874. doi: 10.1016/0042-6989(87)90114-3 PubMedCrossRefGoogle Scholar
  41. Reymond L, Wolfe J (1981) Behavioural determination of the contrast sensitivity function of the eagle Aquila audax. Vision Res 21:263–271. doi: 10.1016/0042-6989(81)90120-6 PubMedCrossRefGoogle Scholar
  42. Schaeffel F, Rohrer B, Lemmer T, Zrenner E (1991) Diurnal control of rod function in the chicken. Visual Neurosci 6:641–653. doi: 10.1017/S0952523800002637 CrossRefGoogle Scholar
  43. Thomas RJ, Székely T, Cuthill IC, Harper DGC, Newson SE, Frayling TD, Wallis PD (2002) Eye size in birds and the timing of song at dawn. Proc R Soc Lond B 269:831–837. doi: 10.1098/rspb.2001.1941 CrossRefGoogle Scholar
  44. Uhlrich DJ, Essock EA, Lehmkuhle S (1981) Cross-species correspondence of spatial contrast sensitivity functions. Behav Brain Res 2:291–299. doi: 10.1016/0166-4328(81)90013-9 PubMedCrossRefGoogle Scholar
  45. Warrant E (2008) Nocturnal vision. In: Masland RH, Albright T (eds) The senses: a comprehensive reference, vol 2. Elsevier, Oxford, pp 53–86CrossRefGoogle Scholar
  46. Warrant EJ, Nilsson D-E (1998) Absorption of white light in photoreceptors. Vision Res 38:195–207. doi: 10.1016/S0042-6989(97)00151-X PubMedCrossRefGoogle Scholar
  47. Wichmann FA, Hill NJ (2001a) The psychometric function: I. fitting, sampling, and goodness of fit. Percept Psychophys 63:1293–1313PubMedCrossRefGoogle Scholar
  48. Wichmann FA, Hill NJ (2001b) The psychometric function: II. bootstrap-based confidence intervals and sampling. Percept Psychophys 63:1314–1329PubMedCrossRefGoogle Scholar
  49. Wyndham E (1980) Diurnal cycle, behaviour and social organization of the budgerigar Melopsittacus undulatus. Emu 80:25–33CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Olle Lind
    • 1
    Email author
  • Tony Sunesson
    • 1
  • Mindaugas Mitkus
    • 1
  • Almut Kelber
    • 1
  1. 1.Lund Vision Group, Department of BiologyLund UniversityLundSweden

Personalised recommendations