Intensity contrast as a crucial cue for butterfly landing

  • Hisaharu Koshitaka
  • Kentaro Arikawa
  • Michiyo KinoshitaEmail author
Short Communication


Papilio butterflies use a tetrachromatic color vision to discriminate a rewarding flower, approach, land and take nectar from the flower. In the course of further analyzing their foraging behavior in a laboratory condition, we found that some butterflies could not land on the target flower even they discriminated and tried to land on it, especially when the target was dark. This phenomenon, which we call “landing suppression”, indicates that the cue for landing differs from the cue for visually locating a flower. We hypothesized that a possible cue for landing was intensity contrast between the target and background, and have initiated to test this hypothesis. We tested the butterflies’ landing behavior to targets of various colors and intensities presented on background of black or various densities of gray. As a result, the landing was most strongly suppressed when the intensity contrast was close to zero irrespective of the target colors, suggesting that the butterflies used the target-background intensity contrast when landing.


Butterfly Foraging behavior Color vision Brightness Intensity contrast 



The work was supported by the Grants-in-Aid for Scientific Research from the JSPS to MK and KA.

Supplementary material

359_2011_671_MOESM1_ESM.doc (52 kb)
Supplementary material 1 (DOC 52 kb)

Supplementary material 2 (MPG 6946 kb)


  1. Arikawa K (2003) Spectral organization of the eye of a butterfly, Papilio. J Comp Physiol A 189:791–800CrossRefGoogle Scholar
  2. Arikawa K, Inokuma K, Eguchi E (1987) Pentachromatic visual system in a butterfly. Naturwissenschaften 74:297–298CrossRefGoogle Scholar
  3. Backhaus WGK (1998) Physiological and psychophysical simulations of color vision in humans and animals. In: Backhaus WGK, Kliegl R, Werner JS (eds) Color vision: perspectives from different disciplines. Walter de Gruyter, Berlin, pp 45–77CrossRefGoogle Scholar
  4. Balkenius A, Kelber A (2006) Colour preferences influences odour learning in the hawkmoth, Macroglossum stellatarum. Naturwissenschaften 93:255–258PubMedCrossRefGoogle Scholar
  5. Balkenius A, Rosen W, Kelber A (2006) The relative importance of olfaction and vision in a diurnal and a nocturnal hawkmoth. J Comp Physiol A 192:431–437CrossRefGoogle Scholar
  6. Bhagavatula P, Claudianos C, Ibbotson M, Srinivasan M (2009) Edge detection in landing budgerigars (Melopsittacus undulatus). PLoS One 4:e7301PubMedCrossRefGoogle Scholar
  7. Dyer AG, Spaethe J, Prack S (2008) Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J Comp Physiol A 194:617–627CrossRefGoogle Scholar
  8. Frisch Kv (1914) Der Farbensinn und Formensinn der Biene. Zool J Physiol 37:1–238Google Scholar
  9. Giurfa M, Nunez J, Backhaus W (1994) Odour and colour information in the foraging choice behaviour of the honeybee. J Comp Physiol A 175:773–779CrossRefGoogle Scholar
  10. Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709CrossRefGoogle Scholar
  11. Hempel de Ibarra N, Vorobyev M, Brandt R, Giurfa M (2000) Detection of bright and dim colours by honeybees. J Exp Biol 203:3289–3298PubMedGoogle Scholar
  12. Kelber A (2005) Alternative use of chromatic and achromatic cues in a hawkmoth. Proc R Soc Lond, B 272:2143–2147CrossRefGoogle Scholar
  13. Kelber A, Pfaff M (1999) True colour vision in the orchard butterfly, Papilio aegeus. Naturwissenschaften 86:221–224CrossRefGoogle Scholar
  14. Kelber A, Balkenius A, Warrant EJ (2002) Scotopic colour vision in nocturnal hawkmoths. Nature 419:922–925PubMedCrossRefGoogle Scholar
  15. Kinoshita M, Arikawa K (2000) Colour constancy of the swallowtail butterfly, Papilio xuthus. J Exp Biol 203:3521–3530PubMedGoogle Scholar
  16. Kinoshita M, Shimada N, Arikawa K (1999) Colour vision of the foraging swallowtail butterfly Papilio xuthus. J Exp Biol 202:95–102PubMedGoogle Scholar
  17. Kinoshita M, Takahashi Y, Arikawa K (2008) Simultaneous color contrast in the foraging swallowtail butterfly, Papilio xuthus. J Exp Biol 211:3504–3511PubMedCrossRefGoogle Scholar
  18. Kinoshita M, Yamazato K, Arikawa K (2011) Polarization-based brightness discrimination in the foraging butterfly, Papilio xuthus. Phyl Trans Biol Sci 366:688–696CrossRefGoogle Scholar
  19. Koshitaka H, Kmoshita M, Arikawa K (2004) Action spectrum of foraging behavior of the Japanese yellow swallowtail butterfly, Papilio xuthus. Acta Biol Hung 55:71–79PubMedCrossRefGoogle Scholar
  20. Koshitaka H, Kinoshita M, Vorobyev M, Arikawa K (2008) Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc Roy Soc Lond B 275:947–954CrossRefGoogle Scholar
  21. Lehrer M, Bischof S (1995) Detection of model flowers by honeybees: the role of chromatic and achromatic contrast. Naturwissenschaften 82:145–147CrossRefGoogle Scholar
  22. Lehrer M, Srinivasan MV, Zhang SW (1990) Visual edge detection in the honeybee and its chromatic properties. Proc R Soc Lond B 238:321–330CrossRefGoogle Scholar
  23. Ronacher B (1998) How do bees learn and recognize visual patterns? Biol Cybern 79:477–485CrossRefGoogle Scholar
  24. Takemura SY, Arikawa K (2006) Ommatidial type-specific interphotoreceptor connections in the lamina of the swallowtail butterfly, Papilio xuthus. J Comp Neurol 494:663–672PubMedCrossRefGoogle Scholar
  25. Takemura S, Kinoshita M, Arikawa K (2005) Photoreceptor projection reveals heterogeneity of lamina cartridges in the visual system of the Japanese yellow swallowtail butterfly, Papilio xuthus. J Comp Neurol 483:341–350PubMedCrossRefGoogle Scholar
  26. Takeuchi Y, Arikawa K, Kinoshita M (2006) Color discrimination at the spatial resolution limit in a swallowtail butterfly, Papilio xuthus. J Exp Biol 209:2873–2879PubMedCrossRefGoogle Scholar
  27. von Helversen O (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol A 80:439–472CrossRefGoogle Scholar
  28. Wakakuwa M, Kurasawa M, Giurfa M, Arikawa K (2005) Spectral heterogeneity of honeybee ommatidia. Naturwissenschaften 92:464–467PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Hisaharu Koshitaka
    • 1
    • 2
  • Kentaro Arikawa
    • 2
  • Michiyo Kinoshita
    • 2
    Email author
  1. 1.Graduate School of Integrated SciencesYokohama City UniversityYokohamaJapan
  2. 2.Laboratory of NeuroethologySokendai (The Graduate University for Advanced Studies)HayamaJapan

Personalised recommendations