Journal of Comparative Physiology A

, Volume 197, Issue 8, pp 819–825 | Cite as

Octopamine and serotonin have opposite effects on antipredator behavior in the orb-weaving spider, Larinioides cornutus

  • Thomas C. JonesEmail author
  • Tamer S. Akoury
  • Christopher K. Hauser
  • Michael F. NeblettII
  • Brent J. Linville
  • Andrea A. Edge
  • Nathaniel O. Weber
Original Paper


In this study, we experimentally elevated levels of octopamine and serotonin in an orb-weaving spider, and observed the effects on the antipredator behavior thanatosis (death feigning), activity level, and running speed. We found that octopamine significantly shortened the duration of thanatosis, and its effect wore off over 24 h. We also found that serotonin significantly lengthened thanatosis, but in this case, the effect persisted for over 24 h. Neither octopamine nor serotonin affected the general activity or running speed of the spiders. To our knowledge, this is the first study to directly explore the role of biogenic amines on a specific antipredator behavior in spiders. Given that spiders must be both aggressive toward prey, yet wary of predators, we believe that this system will be an outstanding model to explore connections between behavioral ecology and neurochemistry.


Aggression Biogenic amines Thanatosis Neurohormones Neuromodulation 



We thank the department of biological sciences and K. Tipton for logistical support of this project. Thanks also to D. Moore, D. Roane, and K. Joplin for useful comments and discussion of the work. Special thanks to E. Seier for statistical consultation. This work was funded in part by the ETSU Honors College through Student-Faculty Collaborative Grants to T. Akoury and C. Hauser. Finally, we are particularly grateful for the helpful comments of F. Barth and two anonymous reviewers.


  1. Antonsen BL, Paul DH (1997) Serotonin and octopamine elicit stereotypical agonistic behaviors in the squat lobster Munida quadrispina (Anomura, Galatheidae). J Comp Physiol A 181:501–510CrossRefGoogle Scholar
  2. Barron AB, Maleszka J, Vander Meer RK, Robinson GE, Maleszka R (2007a) Comparing injection, feeding and topical application methods for treatment of honeybees with octopamine. J Insect Physiol 53:187–194PubMedCrossRefGoogle Scholar
  3. Barron AB, Maleszka R, Vander Meer RK, Robinson GE (2007b) Octopamine modulates honey bee dance behavior. PNAS 104:1703–1707PubMedCrossRefGoogle Scholar
  4. Bellmann H (1997) Kosmos-Atlas Spinnentiere Europas. Frankh-Kosmos Verlag, StuttgartGoogle Scholar
  5. Certel SJ, Savella MG, Schlegel DCF, Kravitz EA (2007) Modulation of Drosophila male behavioral choice. PNAS 104:4706–4711PubMedCrossRefGoogle Scholar
  6. Chen B, Meinertzhagen IA, Shaw SR (1999) Circadian rhythms in light-evoked responses of the fly’s compound eye, and the effects of neuromodulators 5-HT and the peptide PDF. J Comp Physiol A 185:393–404PubMedCrossRefGoogle Scholar
  7. Chen S, Yeelin LA, Bowens NM, Huber R, Kravitz EA (2002) Fighting fruit flies: a model system for the study of aggression. PNAS 99:5664–5668PubMedCrossRefGoogle Scholar
  8. Cuttle MF, Hevers W, Laughlin SB, Hardie RC (1995) Diurnal modulation of photoreceptor conductance in the locust. J Comp Physiol A 176:307–316CrossRefGoogle Scholar
  9. Dierick HA, Greenspan RJ (2006) Molecular analysis of flies selected for aggressive behavior. Nat Genet 38:1023–1031PubMedCrossRefGoogle Scholar
  10. Dierick HA, Greenspan RJ (2007) Serotonin and neuropeptide F have opposite modulatory effects on fly aggression. Nat Genet 39:678–682PubMedCrossRefGoogle Scholar
  11. Dyankonova VE, Shürmann FW, Sakharov DA (1999) Effects of serotonergic and opiodergic drugs on escape behaviours and social status of male crickets. Naturwissenschaften 86:435–437CrossRefGoogle Scholar
  12. Foelix RF (1996) Biology of spiders, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  13. Hoyer SC, Eckart A, Herrel A, Zars T, Fisher SA, Hirsh J, Heisenberg M (2008) Octopamine in male aggression of Drosophila. Curr Biol 18:159–167PubMedCrossRefGoogle Scholar
  14. Huber R, Smith K, Delago A, Isaksson K, Kravitz EA (1997) Serotonin and aggressive motivation in crustaceans: altering the decision to retreat. PNAS 94:5939–5942PubMedCrossRefGoogle Scholar
  15. Huber R, Delago A (1998) Serotonin alters decisions to withdraw in fighting crayfish, Astacus astacus: the motivational concept revisited. J Comp Physiol A 182:573–593CrossRefGoogle Scholar
  16. Kravitz EA, Huber R (2003) Aggression in invertebrates. Curr Opin Neurobiol 13:726–743CrossRefGoogle Scholar
  17. Levi HW, Levi LR (1990) Spiders and their kin. Golden Press, New YorkGoogle Scholar
  18. Lima S, Dill L (1990) Behavioral decisions made under the risk of predation: a reviewed and prospectus. Can J Zool 68:619–640CrossRefGoogle Scholar
  19. Livingston MS, Harris-Warrick RM, Kravitz EA (1980) Serotonin and octopamine produce opposite postures in lobsters. Science 208:76–79CrossRefGoogle Scholar
  20. Miyatake T, Tabuchi K, Sasaki K, Okada K, Katayama K, Moriya S (2008) Pleiotropic antipredator strategies, fleeing and feigning death, correlated with dopamine levels in Tribolium castaneum. Anim Behav 75:113–121CrossRefGoogle Scholar
  21. Nishi Y, Sasaki K, Miyatake T (2010) Biogenic amines, caffeine and tonic immobility in Tribolium castaneum. J Insect Phys 56:622–628CrossRefGoogle Scholar
  22. Panksepp JB, Zhaoxia Y, Drerup C, Huber R (2003) Amine neurochemistry and aggression in crayfish. Microsc Res Tech 60:360–368PubMedCrossRefGoogle Scholar
  23. Peeke HVS, Blank GS, Figler MH, Chang ES (2000) Effects of exogenous serotonin on motor behavior and shelter competition in juvenile lobsters (Homarus americanus). J Comp Physiol A 186:575–582PubMedCrossRefGoogle Scholar
  24. Pruitt JN, Riechert SE, Jones TC (2008) Behavioural syndromes and their fitness consequences in a socially polymorphic spider, Anelosimus studiosus. Anim Behav 76:871–879CrossRefGoogle Scholar
  25. Pruitt JN, Riechert SE, Iturralde G, Vega M, Fitzpatrick BM, Avilés L (2010) Population differences in behavior are explained by shared within-population trait correlations. J Evol Biol 23:748–756PubMedCrossRefGoogle Scholar
  26. Punzo F, Punzo T (2001) Monoamines in the brains of tarantulas (Aphonopelma hentzi) (Araneae, Theraphosidae): differences associated with male agonistic interaction. J Arachnol 29:388–395CrossRefGoogle Scholar
  27. Rayor LS (1996) Attack strategies of predatory wasps (Hymenoptera: Pompilidae; Specidae) on colonial orb web-building spiders (Araneidae: Metepeira incrassata). J Kans Ent Soc 69:67–75Google Scholar
  28. Roeder T (1999) Octopamine in invertebrates. Prog Neurobiol 59:533–561PubMedCrossRefGoogle Scholar
  29. Saifullah ASM, Tomioka K (2002) Serotonin sets the day state in the neurons that control coupling between the optic lobe circadian pacemakers in the cricket Gryllis bimaculatus. J Exp Biol 205:1305–1314PubMedGoogle Scholar
  30. Scheiner R, Plückhahn S, Öney B, Blenau W, Erber J (2002) Behavioural pharmacology of octopamine, tyramine and dopamine in honey bees. Behav Brain Res 136:545–553PubMedCrossRefGoogle Scholar
  31. Schulz DJ, Robinson GE (2001) Octopamine influences division of labor in honey bee colonies. J Comp Physiol A 187:53–61PubMedCrossRefGoogle Scholar
  32. Schulz DJ, Elekonich MM, Robinson GE (2003) Biogenic amines in the antennal lobes and the initiation and maintenance of foraging behavior in honey bees. J Neurosci 54:406–416Google Scholar
  33. Sih A, Bell AM, Johnson JC (2004) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378PubMedCrossRefGoogle Scholar
  34. Stevenson PA, Hoffman HA, Schoch K, Schildberger K (2000) The fight and flight responses of crickets depleted of biogenic amines. J Neurobiol 43:107–120PubMedCrossRefGoogle Scholar
  35. Stevenson PA, Dyakonova V, Rillich J, Schildberger K (2005) Octopamine and experience dependent modulation of aggression in crickets. J Neurosci 25:1431–1441PubMedCrossRefGoogle Scholar
  36. Tierney AJ, Greenlaw MA, Dams-O’Connor K, Aig SD, Perna AM (2004) Behavioral effects of serotonin and serotonin agonists in two species of crayfish, Procambrus clarkii and Orconectes rusticus. Comp Biochem Physiol A 139:495–502Google Scholar
  37. Uetz GW, Boyle J, Heiber CS, Wilcox S (2002) Antipredator benefits of group living in colonial web-building spiders: the ‘early warning effect’. Anim Behav 63:445–452CrossRefGoogle Scholar
  38. Widmer A, Hoger U, Meisner S, French AS, Torkkeli PH (2005) Spider peripheral mechanosensory neurons are directly innervated and modulated by octopaminergic efferents. J Neurosci 25:1588–1598PubMedCrossRefGoogle Scholar
  39. Zera AJ (2007) Endocrine analysis in evolutionary-developmental studies of insect polymorphism: hormone manipulation versus direct measurement of hormonal regulators. Evol Devel 9:499–513CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Thomas C. Jones
    • 1
    Email author
  • Tamer S. Akoury
    • 1
  • Christopher K. Hauser
    • 1
  • Michael F. NeblettII
    • 1
  • Brent J. Linville
    • 1
  • Andrea A. Edge
    • 1
  • Nathaniel O. Weber
    • 1
  1. 1.Department of Biological SciencesEast Tennessee State UniversityJohnson CityUSA

Personalised recommendations