Journal of Comparative Physiology A

, Volume 197, Issue 8, pp 789–797 | Cite as

Melatonin in octopus (Octopus vulgaris): tissue distribution, daily changes and relation with serotonin and its acid metabolite

  • José L. P. Muñoz
  • Marcos A. López Patiño
  • Consuelo Hermosilla
  • Marta Conde-Sieira
  • José L. Soengas
  • Francisco Rocha
  • Jesús M. Míguez
Original Paper

Abstract

Information regarding melatonin production in molluscs is very limited. In this study the presence and daily fluctuations of melatonin levels were investigated in hemolymph, retina and nervous system-related structures in the cephalopod Octopus vulgaris. Adult animals were maintained in captivity under natural photoperiod and killed at different times in a regular daily cycle. Levels of melatonin, serotonin (5-HT) and its acid metabolite (5-hydroxyindole acetic acid, 5-HIAA) in the hemolymph, retina, optic lobe, and cerebral ganglion were assayed by HPLC. Melatonin content fluctuated rhythmically in the retina and hemolymph, peaking at night. In the retina, but not in the other neural tissues, the rhythm was opposite to that of 5-HT, which displayed basal levels at night. Also, 5-HIAA levels in the retina were higher during the night, supporting that rhythmic melatonin production could be linked to diurnal changes in 5-HT degradation. The high levels of melatonin found in the retina point to it as the major source of melatonin in octopus; in addition, a large variation of melatonin content was found in the optic lobe with maximal values at night. All these data suggest that melatonin might play a role in the transduction of the light–dark cycle information for adjustment of rhythmic physiological events in cephalopods.

Keywords

Melatonin Cephalopods Octopus vulgaris Daily rhythms Serotonin 

Notes

Acknowledgments

Animals were supplied by the “Cofradía de Naceiros de San Bartolomeu” in Moaña (Pontevedra, Spain). J.L.P. Muñoz is a CONICYT doctoral fellowship recipient (BIRF-Chile Government). M. Conde is a FPI (BES-2008-002914) fellow. C. Hermosilla had a fellowship from the ECOSUMMER Marie Curie training site (MEST-CT-2005-020501). M.A. López (P.P. 0000 300S 14008) is an Isidro Parga Pondal Researcher from Xunta de Galicia. This work was partially supported from Ministerio de Ciencia e Innovación and European Fund of Regional Development (AGL2010-22247-C03-03). The authors would also like to thank ECIMAT (University of Vigo) for animal housing and care. All procedures were done according to the European Union Council (86/609/EU) and Spanish Government (RD 1201/2005) legal requirements, and the reported ethical and welfare considerations when using cephalopods (Moltschaniwskyj et al. 2007).

References

  1. Abran D, Anctil M, Ali MA (1994) Melatonin activity rhythms in eyes and cerebral ganglia of Aplysia californica. Gen Comp Endocrinol 96:215–222PubMedCrossRefGoogle Scholar
  2. Agapito D, Herrero B, Pablos MI, Miguel JL, Recio JM (1995) Circadian rhythms of melatonin and serotonin N-acetyltransferase in Procambarus clarkii. Comp Biochem Physiol A 112:179–185CrossRefGoogle Scholar
  3. Aguzzi J, Sanchez-Pardo J, García JA, Sardá F (2009) Day–night and depth differences in haemolymph melatonin of the Norway lobster, Nephrops norvergicus (L). Deep Sea Res I 56:1894–1905CrossRefGoogle Scholar
  4. Arnoult F, Vivien-Roels B, Pévet P, Vernet G (1994) Melatonin in the nemertine worm Lineus lacteus: identification and daily variations. Biol Signals 3:296–301PubMedCrossRefGoogle Scholar
  5. Blanc A, Vivien-Roels B, Pévet P, Attia J, Buisson B (2003) Melatonin and 5-methoxytryptophol (5-ML) in nervous and/or neurosensory structures of a gastropod mollusc (Helix aspersa maxima): synthesis and diurnal rhythms. Gen Comp Endocrinol 131:168–175PubMedCrossRefGoogle Scholar
  6. Blazer I, Espínola IR, Fuentes-Pardo B (1997) Daily variations of immunoreactive melatonin in the visual system of crayfish. Biol Cell 89:539–543CrossRefGoogle Scholar
  7. Block GD, Wallace S (1982) Localization of a circadian pacemaker in the eye of a mollusc, Bulla. Science 217:155–157PubMedCrossRefGoogle Scholar
  8. Boyer C, Maubert E, Charnay E, Charnay Y, Chichery R (2007) Distribution of neurokinin A-like and serotonin immunoreactivities within the vertical lobe complex in Sepia officinalis. Brain Res 1133:53–66PubMedCrossRefGoogle Scholar
  9. Brown ER, Piscopo S, De Stefano R, Giuditta A (2006) Brain and behavioural evidence for rest–activity cycles in Octopus vulgaris. Behav Brain Res 172:355–359PubMedCrossRefGoogle Scholar
  10. Ceinos RM, Rabade S, Soengas JL, Míguez JM (2005) Indoleamines and 5-methoxyindoles in trout pineal organ in vivo: daily changes and influence of photoperiod. Gen Comp Endocrinol 144:67–77PubMedCrossRefGoogle Scholar
  11. Daw NW, Pearlman AL (1974) Pigment migration and adaptation in the eye of the squid, Loligo pealei. J Gen Physiol 63:22–36PubMedCrossRefGoogle Scholar
  12. Falcón J, Migaud H, Muñoz-Cueto JA, Carrillo M (2010) Current knowledge on the melatonin system in teleost fish. Gen Comp Endocrinol 165:469–482PubMedCrossRefGoogle Scholar
  13. FAO (2009) Global production statistics 1950–2007. United Nations Food and Agriculture Organization. On line at: http://firms.fao.org/gfcm/topic/17105/en
  14. Finocchiaro L, Callebert J, Launay JM, Jallon JM (1988) Melatonin biosynthesis in Drosophila: its nature and its effect. J Neurochem 50:382–387PubMedCrossRefGoogle Scholar
  15. Gesto M, Tintos A, Soengas JL, Míguez JM (2006) Effects of acute and prolonged naphthalene exposure on brain monoaminergic neurotransmitters in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C 144:173–183CrossRefGoogle Scholar
  16. Gleadall IG, Ohtsu K, Gleadall E, Tsukahara Y (1993) Screening-pigment migration in the octopus retina includes control by dopaminergic efferents. J Exp Biol 185:1–16Google Scholar
  17. Guerra A, Roura A, González AF, Pascual S, Cherel Y, Pérez-Losada M (2010) Morphological and genetic evidence that Octopus vulgaris Cuvier, 1797 inhabits Amsterdam and Saint Paul Islands (Southern Indian Ocean). ICES J Mar Sci 67:1401–1407Google Scholar
  18. Hanlon R, Messenger JB (1996) Cephalopod behaviour. Cambridge University Press, Cambridge, p 248Google Scholar
  19. Hardeland R, Poeggeler B (2003) Non-vertebrate melatonin. J Pineal Res 34:233–241PubMedCrossRefGoogle Scholar
  20. Hintermann E, Grieder NC, Amherd R, Brodbeck D, Meyer UR (1996) Cloning of an arylalkylamine N-acetyl transferase (aaNAT1) from Drosophila melanogaster expressed in the nervous system. Proc Nat Acad Sci USA 93:12315–12320PubMedCrossRefGoogle Scholar
  21. Huether G (1993) The contribution of extrapineal sites of melatonin synthesis to circulating melatonin levels in higher vertebrates. Experientia 49:665–670PubMedCrossRefGoogle Scholar
  22. Itoh MT, Hattori A, Sumi Y, Suzuki T (1994) Identification of melatonin in different organs of the cricket, Gryllus bimaculatus. Zool Sci 11:577–581Google Scholar
  23. Itoh MT, Shinozawa T, Sumi Y (1999) Circadian rhythms of melatonin-synthesizing enzyme activities and melatonin levels in planarians. Brain Res 830:165–173PubMedCrossRefGoogle Scholar
  24. Kayes RJ (1974) The daily activity pattern of Octopus vulgaris in a natural habitat. Mar Behav Physiol 2:337–343CrossRefGoogle Scholar
  25. Kime DE, Messenger JB (1990) Monoamines in the cephalopod CNS: an HPLC analysis. Comp Biochem Physiol C 96:49–57CrossRefGoogle Scholar
  26. Klein DC (2007) Evolution of the vertebrate pineal gland: the AAANAT hypothesis. Chronobiol Int 23:5–20CrossRefGoogle Scholar
  27. Klein DC, Coon SL, Roseboon PH, Weller JL, Bernard M, Gaster JA, Zatz M, Luvone PM, Rodriguez IR, Bégay V, Falcón J, Cahill GM, Cassone VM, Baller R (1997) The melatonin rhythm-generating enzyme: molecular regulation of serotonin N-acetyltransferase in the pineal gland. Recent Prog Horm Res 52:307–357PubMedGoogle Scholar
  28. Maciel FB, Geihs MA, Vargas MA, Pinto Cruz B, Ramos BP, Vakkuri O, Meyer-Rochow VB, Maia Nery LE, Allodi S (2008) Daily variation of melatonin content in the optic lobes of the crab Neohelice granulata. Comp Biochem Physiol A 149:162–166CrossRefGoogle Scholar
  29. Maddock L, Young JZ (1987) Quantitative differences among the brains of cephalopods. J Zool Lond 212:739–767CrossRefGoogle Scholar
  30. Mangold K (1983) Octopus vulgaris. In: Boyle PR (ed) Cephalopod life cycles. Species accounts, vol 1. Academic Press, London, pp 335–364Google Scholar
  31. Mangold K (1998) The Octopodinae from the Eastern Atlantic Ocean and the Mediterranean Sea. Smith Cont Zool 586:521–528Google Scholar
  32. Meisel DV, Byrne RA, Kuba M, Griebel U, Mather JA (2003) Circadian rhythms in Octopus vulgaris. Berliner Palâbiol Abh 3:171–177Google Scholar
  33. Meisel DV, Byrne RA, Kuba M, Mather J, Ploberger W, Reschenhofer E (2006) Contrasting activity patterns of two related octopus species, Octopus macropus and Octopus vulgaris. J Comp Psychol 120:191–197PubMedCrossRefGoogle Scholar
  34. Messenger JB (1996) Neurotransmitters of cephalopods. Invertebr Neurosci 2:95–114CrossRefGoogle Scholar
  35. Moltschaniwskyj NA, Hall K, Lipinski MR, Marian JEAR, Nishiguchi M, Sakai M, Shulman DJ, Sinclair B, Sinn DL, Staudinger M, Van Gelderen R, Villanueva R, Warnke K (2007) Ethical and welfare considerations when using cephalopods as experimental animals. Rev Fish Biol Fish 17:455–476CrossRefGoogle Scholar
  36. Morita M, Hall F, Best JB, Gern W (1989) Photoperiodic modulation of cephalic melatonin in planarians. J Exp Zool 214:383–388Google Scholar
  37. Muñoz JLP, Ceinos RM, Soengas JL, Míguez JM (2009) A single and sensitive method for determination of melatonin in plasma, bile and gastrointestinal tissues by high performance liquid chromatography with fluorescence detection. J Chromatogr B 877:2173–2177CrossRefGoogle Scholar
  38. Palmer JD (1996) Time, tide and the living clock of marine organisms. Am Sci 84:570–578Google Scholar
  39. Reiter RJ (1993) The melatonin rhythm: both a clock and a calendar. Experientia 49:1361–1369Google Scholar
  40. Richter K, Peschke E, Peschke D (2000) A neuroendocrine releasing effect of melatonin in the brain of an insect, Periplaneta americana. J Pineal Res 28:129–135PubMedCrossRefGoogle Scholar
  41. Rosa R, Nunes L, Sousa Reis C (2002) Seasonal changes in the biochemical composition of Octopus vulgaris Cuvier, 1797, from three areas of the Portuguese coast. Bull Mar Sci 71:739–751Google Scholar
  42. Sousa Reis C (1989) Distribution of early juvenile cephalopods at the West coast of Portugal. Açoreana 7:77–82Google Scholar
  43. Suzuki H, Yamamoto T, Inenaga M, Uemura JH (2000) Galanin-immunoreactivity neuronal system and colocalization with serotonin in the optic lobe and peduncle complex of the octopus (Octopus vulgaris). Brain Res 865:168–176PubMedCrossRefGoogle Scholar
  44. Tilden AR, Alt J, Brummer K, Groth R, Herwig K, Wilson A, Wilson S (2001) Influence of photoperiod on N-acetyltransferase activity and melatonin in the fiddler crab Uca pugilator. Gen Comp Endocrinol 122:233–237PubMedCrossRefGoogle Scholar
  45. Tilden AR, Shanahan JK, Khilji ZS, Owen JG, Sterio TW, Thurston KT (2003) Melatonin and locomotor activity in the fiddler crab Uca pugilator. J Exp Zool A 297:80–87Google Scholar
  46. Vivien-Roëls B, Pévet P (1986) Is melatonin an evolutionary conservative molecule involved in the transduction of photoperiodic information in all living organism? Adv Pineal Res 1:61–68Google Scholar
  47. Vivien-Roëls B, Pévet P (1993) Melatonin: presence and formation in invertebrates. Experientia 49:642–647CrossRefGoogle Scholar
  48. Vivien-Roëls B, Pévet P, Beck O, Fevre-Montagne M (1984) Identification of melatonin in the compound eye of an insect, the locust (Locusta migratoria), by radioimmunoassay and gas chromatography-mass spectrometry. Neurosci Lett 49:153–157PubMedCrossRefGoogle Scholar
  49. Wells MJ, O’Dor RK, Mangold K, Wells J (1983) Diurnal rhythms in activity and metabolic rate in Octopus vulgaris. Mar Behav Physiol 9:275–287CrossRefGoogle Scholar
  50. Wetterberg L, Hayes DK, Halberg F (1987) Circadian rhythms of melatonin in the brain of the face fly, Musca autumnalis. Chronobiologia 14:377–381PubMedGoogle Scholar
  51. Withyachumnarnkul B, Pongsa-Asawapaiboon A, Ajpru S, Siamwalla P, Trakulrungsi W, Samritthong C (1992) Continuous light increases N-acetyltransferase activity in the optic lobe of the giant freshwater prawn Macrobrachium rosenbergii de Man (Crustacea: Decapoda). Life Sci 51:1479–1484PubMedCrossRefGoogle Scholar
  52. Withyachumnarnkul B, Pongtippatee P, Ajpru S (1995) N-acetyltransferase, hydroxyindole-O-methyltransferase and melatonin in the optic lobes of the giant tiger shrimp Penaus monodon. J Pineal Res 18:217–221PubMedCrossRefGoogle Scholar
  53. Young JZ (1962a) The retina of cephalopods and degeneration after optic nerve section. Phil Trans B 245:1–18CrossRefGoogle Scholar
  54. Young JZ (1962b) The optic lobe of Octopus vulgaris. Phil Trans B 245:19–58CrossRefGoogle Scholar
  55. Young JA (1971) The anatomy of nervous system of Octopus vulgaris. Clarendon, OxfordGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • José L. P. Muñoz
    • 1
    • 3
  • Marcos A. López Patiño
    • 2
    • 3
  • Consuelo Hermosilla
    • 2
    • 3
  • Marta Conde-Sieira
    • 1
    • 3
  • José L. Soengas
    • 1
    • 3
  • Francisco Rocha
    • 2
    • 3
  • Jesús M. Míguez
    • 1
    • 3
  1. 1.Lab. Fisioloxia Animal, Facultade de BioloxíaUniversidade de VigoVigoSpain
  2. 2.Facultade de Ciencias do MarUniversidade de VigoVigoSpain
  3. 3.Estación de Ciencias Mariñas de Toralla (ECIMAT)Universidade de VigoVigoSpain

Personalised recommendations