Journal of Comparative Physiology A

, Volume 197, Issue 7, pp 729–742 | Cite as

Evidence for involvement of TRPA1 in the detection of vibrations by hair bundle mechanoreceptors in sea anemones

  • Janna L. Mahoney
  • Erin M. Graugnard
  • Patricia Mire
  • Glen M. Watson
Original Paper


A homolog of TRPA1 was identified in the genome of the anemone, Nematostella vectensis (nv-TRPA1a), and predicted to possess six ankyrin repeat domains at the N-terminus and an ion channel domain near the C-terminus. Transmembrane segments of the ion channel domain are well conserved among several known TRPA1 polypeptides. Inhibitors of TRPA1 including ruthenium red decrease vibration-dependent discharge of nematocysts in N. vectensis and Haliplanella luciae. Activators of TRPA1 including URB-597 and polygodial increase nematocyst discharge in the absence of vibrations. Co-immunoprecipitation yields a band on SDS-PAGE gels at the predicted mass of the nv-TRPA1a polypeptide among other bands. Co-immunoprecipitation performed in the presence of antigenic peptide decreases the yield of this and several other polypeptides. In untreated controls, anti-nv-TRPA1a primarily labels the base of the hair bundle with some labeling also distributed along the length of stereocilia. Tissue immunolabeled in the presence of the antigenic peptide exhibits reduced labeling. Activating chemoreceptors for N-acetylated sugars induce immunolabel to distribute distally in stereocilia. In anemones, activating chemoreceptors for N-acetylated sugars induce hair bundles to elongate among several other structural and functional changes. Taken together, these results are consistent with the possibility that nv-TRPA1a participates in signal transduction of anemone hair bundles.


Hair cell Tip link Transduction Cnidaria Nematocyst 



We appreciate the financial support from the US National Science Foundation, IOB0542574 and the diligence of the two anonymous reviewers.


  1. Ahmed ZM, Goodyear R, Riazuddin Sa, Lagziel A, Legan PK, Behra M, Burgess SM, Lilley KS, Wilcox ER, Riazuddin Sh, Griffith AJ, Frolenkov GJ, Belyantseva IA, Richardson GP, Friedman TB (2006) The tip link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin 15. J Neurosci 26:7022–7034PubMedCrossRefGoogle Scholar
  2. Asai Y, Holt JR, Geleoc GSG (2010) A quantitative analysis of the spatiotemporal pattern of transient receptor potential gene expression in the developing mouse cochlea. JARO 11:27–37PubMedCrossRefGoogle Scholar
  3. Ashmore JF (1991) The electrophysiology of hair cells. Annu Rev Physiol 53:465–476PubMedCrossRefGoogle Scholar
  4. Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 7:510–521CrossRefGoogle Scholar
  5. Corey DP (2006) What is the hair cell transduction channel? J Physiol 576:23–28PubMedCrossRefGoogle Scholar
  6. Corey DP, Garcia-Anoveros J, Holt JR, Kwan KY, Lin S-Y, Vollrath MA, Amalfitano A, Cheung EL-M, Derfler BH, Duggan A, Geleoc GSG, Gray PA, Hoffman MP, Rehm H, Tamasaukas D, Zhang D-S (2004) TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature 432:723–730PubMedCrossRefGoogle Scholar
  7. Deutscher D, Meilijson I, Schuster S, Ruppin E (2008) Can single knockouts accurately single out gene functions? BMC Syst Biol 2:50PubMedCrossRefGoogle Scholar
  8. Escalera J, vonHehn CA, Bessac BF, Sivula M, Jordt SE (2008) TRPA1 mediates the noxious effects of natural sesquiterpene deterrents. J Biol Chem 283:24136–24144PubMedCrossRefGoogle Scholar
  9. Farris HE, LeBlanc CL, Goswami J, Ricci AJ (2004) Probing the pore of the auditory hair cell mechanotransducer channel in turtle. J Physiol 558:769–792PubMedCrossRefGoogle Scholar
  10. Fettiplace R (2009) Defining features of the mechanoelectrical transducer channel. Pflugers Arch 458:1115–1123PubMedCrossRefGoogle Scholar
  11. Finn RD, Mistry J, Schuster-Böckler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer ELL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251PubMedCrossRefGoogle Scholar
  12. Germain G, Anctil M (1996) Evidence for intercellular coupling and connexin-like protein in the luminescent endoderm of Renilla koellikeri (Cnidaria, Anthozoa). Biol Bull 191:353–366CrossRefGoogle Scholar
  13. Gillespie PG, Muller U (2009) Mechanosensation by hair cells: models, molecules, and mechanisms. Cell 139:33–44PubMedCrossRefGoogle Scholar
  14. Hand C, Uhlinger KR (1992) The culture, sexual and asexual reproduction, and growth of the sea anemone Nematostella vectensis. Biol Bull 182:169–176CrossRefGoogle Scholar
  15. Howard J, Roberts WM, Hudspeth AJ (1988) Mechanoelectrical transduction by hair cells. Annu Rev Biophys Chem 17:99–124CrossRefGoogle Scholar
  16. Hudspeth AJ (1985) The cellular basis of hearing: the biophysics of hair cells. Science 230:745–752PubMedCrossRefGoogle Scholar
  17. Kahsay RY, Gao G, Liao L (2005) An improved hidden Markov model for transmembrane protein detection and topology prediction and its application to complete genomes. Bioinformatics 21:1853–1858PubMedCrossRefGoogle Scholar
  18. Kazmierczak P, Sakaguchi H, Tokita J, Wilson-Kubalek EM, Milligan RA, Muller U, Kachar B (2007) Cadherin 23 and protocadherin 15 interact to form tip link filaments in sensory hair cells. Nature 449:87–91PubMedCrossRefGoogle Scholar
  19. Krayesky SL, Mahoney JL, Kinler KM, Peltier S, Calais W, Allaire K, Watson GM (2010) Regulation of spirocyst discharge in the model sea anemone Nematostella vectensis. Mar Biol 157:1041–1047CrossRefGoogle Scholar
  20. Kwan KY, Allchorne AJ, Vollrath MA, Christensen AP, Zhang DS, Woolf CJ, Corey DP (2006) TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair cell transduction. Neuron 50:277–289PubMedCrossRefGoogle Scholar
  21. LeMasurier M, Gillespie PG (2005) Hair-cell mechanotransduction and cochlear amplification. Neuron 48:403–415PubMedCrossRefGoogle Scholar
  22. Minasian LL Jr, Mariscal RN (1979) Characteristics and regulation of fission activity in clonal cultures of the cosmopolitan sea anemone Haliplanella luciae. Biol Bull 157:478–493CrossRefGoogle Scholar
  23. Mire P, Nasse J (2002) Hair bundle motility induced by chemoreceptors in anemones. Hear Res 163:111–120PubMedCrossRefGoogle Scholar
  24. Mire P, Watson GM (1997) Mechanotransduction of hair bundles arising from multicellular complexes in anemones. Hear Res 113:224–234PubMedCrossRefGoogle Scholar
  25. Mire P, Nasse J, Venable-Thibodeaux S (2000) Gap junctional communication in the vibration-sensitive response of sea anemones. Hear Res 144:109–123PubMedCrossRefGoogle Scholar
  26. Mire-Thibodeaux P, Watson GM (1993) Direct monitoring of intracellular calcium ions in sea anemone tentacles suggests regulation of nematocyst discharge by remote, rare epidermal cells. Biol Bull 185:335–345CrossRefGoogle Scholar
  27. Mire-Thibodeaux P, Watson GM (1994a) Cyclical morphodynamics of hair bundles in sea anemones: second messenger pathways. J Exp Zool 270:517–526CrossRefGoogle Scholar
  28. Mire-Thibodeaux P, Watson GM (1994b) Morphodynamic hair bundles arising from sensory cell/supporting cell complexes frequency-tune nematocyst discharge in sea anemones. J Exp Zool 268:282–292PubMedCrossRefGoogle Scholar
  29. Nagata K, Duggan A, Kumar G, Garcia-Anoveros J (2005) Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 25:4052–4061PubMedCrossRefGoogle Scholar
  30. Niforatos W, Zhang XF, Lake MR, Walter KA, Neelands T, Holzman TF, Scott VE, Faltynek CR, Moreland RB, Chen J (2007) Activation of TRPA1 channels by the fatty acid amide hydrolase inhibitor 3′-carbamoylbiphenyl-3yl cyclohexylcarbamate (URB597). Mol Pharmacol 71:1209–1216PubMedCrossRefGoogle Scholar
  31. Owsianik G, D’hoedt D, Voets T, Nilius B (2006) Structure–function relationship of the TRP superfamily. Rev Physiol Biochem Pharmacol 156:61–90PubMedCrossRefGoogle Scholar
  32. Ozacmak VH, Thorington GU, Fletcher WH, Hessinger DA (2001) N-acetylneuraminic acid (NANA) stimulates in situ cyclic AMP production in tentacles of the sea anemone (Aiptasia pallida): possible role in chemosensitization of nematocyst discharge. J Exp Biol 204:2011–2020PubMedGoogle Scholar
  33. Prober DA, Zimmerman S, Myers BR, McDermott BM Jr, Kim SH, Caron S, Rihel J, Solnica-Krezel L, Julius D, Hudspeth AJ, Schler AF (2008) Zebrafish TRPA1 channels are required for chemosensation but not for thermosensation or mechanosensory hair cell function. J Neurosci 28:10102–10110PubMedCrossRefGoogle Scholar
  34. Roberts WM, Howard J, Hudspeth AJ (1988) Hair cells: transduction, tuning, and transmission in the inner ear. Annu Rev Cell Biol 4:63–92PubMedCrossRefGoogle Scholar
  35. Russell TJ, Watson GM (1995) Evidence for intracellular stores of calcium ions involved in regulating nematocyst discharge. J Exp Zool 273:175–185CrossRefGoogle Scholar
  36. Sotomayor M, Corey DP, Schulten K (2005) In search of the hair cell gating spring: elastic properties of ankyrin and cadherin repeats. Structure 13:669–682PubMedCrossRefGoogle Scholar
  37. Staruschenko A, Jeske NA, Akopian AN (2010) Contribution of TRPV1-TRPA1 interaction to single channel properties of the TRPA1 channel. J Biol Chem 285:15167–15177PubMedCrossRefGoogle Scholar
  38. Sullivan JC, Ryan JF, Watson JA, Webb J, Mullikan JC, Rokhsar D, Finnerty JR (2006) Stellabase: The Nematostella vectensis genomics database. Nucleic Acids Res 34:D495–D499PubMedCrossRefGoogle Scholar
  39. Thorington GU, Hessinger DA (1988) Control of cnida discharge: I. Evidence for two classes of chemoreceptor. Biol Bull 174:163–171CrossRefGoogle Scholar
  40. Watson GM, Hessinger DA (1989) Cnidocyte mechanoreceptors are tuned to the movements of swimming prey by chemoreceptors. Science 243:1589–1591PubMedCrossRefGoogle Scholar
  41. Watson GM, Hessinger DA (1992) Receptors for N-acetylated sugars may stimulate adenylate cyclase to sensitize and tune mechanoreceptors involved in triggering nematocyst discharge. Exp Cell Res 198:8–16PubMedCrossRefGoogle Scholar
  42. Watson GM, Hudson RR (1994) Frequency and amplitude tuning of nematocyst discharge by proline. J Exp Zool 268:177–185CrossRefGoogle Scholar
  43. Watson GM, Roberts J (1995) Chemoreceptor-mediated polymerization and depolymerization of actin in hair bundles of sea anemones. Cell Motility Cytoskeleton 30:208–220CrossRefGoogle Scholar
  44. Watson GM, Mire P, Hudson RR (1997) Hair bundles of sea anemones as a model system for vertebrate hair bundles. Hear Res 107:53–66PubMedCrossRefGoogle Scholar
  45. Watson GM, Mire P, Hudson RR (1998) Frequency specificity of vibration dependent discharge of nematocysts in sea anemones. J Exp Zool 281:582–593PubMedCrossRefGoogle Scholar
  46. Watson GM, Pham L, Graugnard EM, Mire P (2008) Cadherin 23-like polypeptide in hair bundle mechanoreceptors of sea anemones. J Comp Physiol Ser A 194:811–820CrossRefGoogle Scholar
  47. Watson GM, Mire P, Kinler KM (2009) Mechanosensitivity in the model sea anemone Nematostella vectensis. Mar Biol 156:2129–2137CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Janna L. Mahoney
    • 1
  • Erin M. Graugnard
    • 1
  • Patricia Mire
    • 1
  • Glen M. Watson
    • 1
  1. 1.Department of BiologyUniversity of Louisiana at LafayetteLafayetteUSA

Personalised recommendations