Journal of Comparative Physiology A

, Volume 197, Issue 5, pp 413–423 | Cite as

Frequency alternation and an offbeat rhythm indicate foraging behavior in the echolocating bat, Saccopteryx bilineata

  • John M. RatcliffeEmail author
  • Lasse Jakobsen
  • Elisabeth K. V. Kalko
  • Annemarie Surlykke
Original Paper


The greater sac-winged bat, Saccopteryx bilineata (Emballonuridae), uses two distinct echolocation call sequences: a ‘monotonous’ sequence, where bats emit ~48 kHz calls at a relatively stable rate, and a frequency-alternating sequence, where bats emit calls at ~45 kHz (low-note call) and ~48 kHz (high-note call). The frequencies of these low–high-note pairs remain stable within sequences. In Panama, we recorded echolocation calls from S. bilineata with a multi-microphone array at two sites: one a known roosting site, the other a known foraging site. Our results indicate that this species (1) only produces monotonous sequences in non-foraging contexts and, at times, directly after emitting a feeding buzz and (2) produces frequency-alternating sequences when actively foraging. These latter sequences are also characterized by an unusual, offbeat emission rhythm. We found significant positive relationships between (1) call intensity and call duration and (2) call intensity and distance from clutter. However, these relationships were weaker than those reported for bats from other families. We speculate on how call frequency alternation and an offbeat emission rhythm might reflect a novel strategy for prey detection at the edge of complex habitat in this ancient family of bats.


Sensory ecology Foraging Behavioral flexibility Source level Detection distance 



Decibel sound pressure level re. 20 μPa root mean square


Peak frequency



We thank Signe Brinkløv for field assistance. Signe Brinkløv, Brock Fenton, Kirsten Jung, Björn Siemers, Sub Zawadzki and two anonymous reviewers provided constructive criticism that helped us improve upon previous versions of the manuscript. STRI provided full access to research facilities and excellent logistical support. This study was funded by research grants from the Danish Natural Science Research Foundation (JMR, AS), the Oticon Foundation (LJ), STRI (EKVK) and the German Science Foundation (EKVK).


  1. ANSI (American National Standards Institute) (1978) Method for the calculation of the absorption of sound by the atmosphere. Am Inst Phys Acoust Soc Am, New YorkGoogle Scholar
  2. Barclay RMR (1983) Echolocation calls of emballonurid bats from Panama. J Comp Physiol 151:515–520CrossRefGoogle Scholar
  3. Behr O, von Helversen O (2004) Bat serenades—complex courtship songs of the sac-winged bat (Saccopteryx bilineata). Behav Ecol Sociobiol 56:106–115CrossRefGoogle Scholar
  4. Behr O, von Helversen O, Heckel G, Nagy M, Voigt CC, Mayer F (2006) Territorial songs indicate male quality in the sac-winged bat Saccopteryx bilineata (Chiroptera, Emballonuridae). Behav Ecol 17:810–817CrossRefGoogle Scholar
  5. Behr O, Knörnschild M, von Helversen O (2009) Territorial counter-singing in male sac-winged bats (Saccopteryx bilineata): low frequency songs trigger a stronger response. Behav Ecol Sociobiol 63:433–442CrossRefGoogle Scholar
  6. Biscardi S, Orprecio J, Fenton MB, Tsoar A, Ratcliffe JM (2004) Data, sample sizes and statistics affect the recognition of bats by their echolocation calls. Acta Chiropterol 62:347–363Google Scholar
  7. Bradbury JW, Vehrenkamp SL (1976) Social organization and foraging in emballonurid bats. I. Field studies. Behav Ecol Sociobiol 1:337–381CrossRefGoogle Scholar
  8. Brinkløv S, Surlykke A, Kalko EKV (2009) Intense echolocation calls from two “whispering” bats, Artibeus jamaicensis and Macrophyllum macrophyllum (Phyllostomidae). J Exp Biol 212:11–20PubMedCrossRefGoogle Scholar
  9. Brinkløv S, Kalko EKV, Surlykke A (2010) Dynamic adjustment of biosonar intensity to habitat clutter in the bat Macrophyllum macrophyllum (Phyllostomidae). Behav Ecol Sociobiol 64:1867–1874CrossRefGoogle Scholar
  10. Brüel and Kjær (1982) Condenser microphones and microphone preamplifiers for acoustic measurements. Data handbook. Brüel and Kjær, NærumGoogle Scholar
  11. Davidson SM, Wilkinson GS (2004) Function of male song in the greater white-lined bat, Saccopteryx bilineata. Anim Behav 67:883–891CrossRefGoogle Scholar
  12. Dechmann DKN, Heucke SL, Giuggioli L, Kamran S, Voigt CC, Wikelski M (2009) Experimental evidence for group hunting via eavesdropping in echolocating bats. Proc R Soc Lond Ser B 276:2721–2728CrossRefGoogle Scholar
  13. Denzinger A, Siemers BM, Schaub A, Schnitzler H-U (2001) Echolocation by the barbastelle bat, Barbastella barbastellus. J Comp Physiol A 187:521–528PubMedCrossRefGoogle Scholar
  14. Fenton MB, Bernard E, Bouchard S, Hollis L, Johnston D, Lausen C, Ratcliffe JM, Riskin DK, Taylor JR, Zigorus J (2001) The bat fauna of Lamanai, Belize: roosts and trophic roles. J Trop Ecol 17:511–524CrossRefGoogle Scholar
  15. Fenton MB, Taylor PJ, Jacobs DS, Richardson EJ, Bernard E, Bouchard S, DeBaeremaeker KR, ter Hofstede H, Hollis L, Lausen CL, Lister JS, Rambaldini D, Ratcliffe JM, Reddy E (2002) Researching little-known species: the African bat Otomops martiensseni (Chiroptera: Molossidae). Biodiv Conserv 11:1583–1606CrossRefGoogle Scholar
  16. Griffin DR, Webster FA, Michael CR (1960) The echolocation of flying insects by bats. Anim Behav 8:141–154CrossRefGoogle Scholar
  17. Hiryu S, Bates ME, Simmons JA, Riquimaroux H (2010) FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter. Proc Natl Acad Sci USA 107:7048–7053PubMedCrossRefGoogle Scholar
  18. Hoffmann FF, Hejduk J, Caspers B, Siemers BM, Voigt CC (2007) In the mating system of the bat Saccopteryx bilineata, bioacoustic constraints impede male eavesdropping on female echolocation calls for their surveillance. Can J Zool 85:863–872CrossRefGoogle Scholar
  19. Holderied MW, von Helversen O (2003) Echolocation range and wing beat period match in aerial-hawking bats. Proc R Soc Lond B 270:2293–2299CrossRefGoogle Scholar
  20. Jensen ME (2000) The effect of acoustic interference and clutter objects on search signal design in echolocating bats. Dissertation, University of Southern DenmarkGoogle Scholar
  21. Jung K, Kalko EKV, von Helversen O (2007) Echolocation calls in Central American emballonurid bats: signal design and call frequency alternation. J Zool 272:125–137CrossRefGoogle Scholar
  22. Kalko EKV (1995) Echolocation signal design, foraging habitats and guild structure in six neotropical sheath-tailed bats (Emballonuridae). Symp Zool Soc Lond 67:259–273Google Scholar
  23. Kalko EKV, Estrada-Villegas S, Schmidt M, Wegmann M, Meyer CFJ (2008) Flying high-assessing the use of the aerosphere by bats. J Integr Comp Biol 48:60–73CrossRefGoogle Scholar
  24. Kingston T, Rossiter SJ (2004) Harmonic-hopping in Wallacea’s bats. Nature 429:654–657PubMedCrossRefGoogle Scholar
  25. Knörnschild M, Behr O, von Helversen O (2006) Babbling behavior in the sac-winged bat (Saccopteryx bilineata). Naturwissenschaften 93:451–455PubMedCrossRefGoogle Scholar
  26. Masters WM, Raver KAS, Kazial KA (1995) Sonar signals of big brown bats, Eptesicus fuscus, contain information about individual identity, age, and family affiliation. Anim Behav 50:1243–1260CrossRefGoogle Scholar
  27. Morrison DW (1980) Flight speeds of some tropical forest bats. Am Midl Nat 104:189–192CrossRefGoogle Scholar
  28. Moss CF, Schnitzler H-U (1995) Behavioural studies of auditory information processing. In: Popper AN, Fay RR (eds) Hearing in bats. Springer, Berlin, pp 87–145Google Scholar
  29. Moss CF, Bohn K, Gilkenson H, Surlykke A (2006) Active listening for spatial orientation in a complex auditory scene. PLoS Biol 4:615–626CrossRefGoogle Scholar
  30. Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Phil Trans R Soc Lond Ser B 316:335–427CrossRefGoogle Scholar
  31. O’Farrell MJ, Miller BW (1997) A new examination of echolocation calls of some neotropical bats (Emballonuridae and Mormoopidae). J Mammal 78:954–963CrossRefGoogle Scholar
  32. Pye JD (1980) Adaptiveness of echolocation signals in bats. Trends Neurosci 3:232–235Google Scholar
  33. Ratcliffe JM, ter Hofstede HM, Avila-Flores R, Fenton MB, McCracken GF, Biscardi S, Blasko J, Gillam E, Orprecio J, Spanjer G (2004) Conspecifics influence call design in the Brazilian free-tailed bat, Tadarida brasiliensis. Can J Zool 82:966–971CrossRefGoogle Scholar
  34. Ratcliffe JM, Raghuram H, Marimuthu G, Fullard JH, Fenton MB (2005) Hunting in unfamiliar space: echolocation in the Indian false vampire bat, Megaderma lyra, when gleaning prey. Behav Ecol Sociobiol 58:157–164CrossRefGoogle Scholar
  35. Ratcliffe JM, Fullard JH, Arthur BJ, Hoy RR (2011) Adaptive auditory risk assessment in the dogbane tiger moth when pursued by bats. Proc R Soc Lond Ser B 278:364–370CrossRefGoogle Scholar
  36. Schnitzler H-U, Kalko EKV (2001) Echolocation by insect eating bats. Bioscience 51:557–569CrossRefGoogle Scholar
  37. Schuchmann M, Siemers BM (2010) Behavioral evidence for community-wide species discrimination from echolocation calls in bats. Am Nat 176:72–82PubMedCrossRefGoogle Scholar
  38. Siemers BM, Kalko EKV, Schnitzler H-U (2001) Echolocation behaviour and signal plasticity in the neotropical bat Myotis nigricans (Schinz, 1821) (Vespertilionidae): a convergent case with European species of Pipistrellus? Behav Ecol Sociobiol 50:317–328CrossRefGoogle Scholar
  39. Simmons JA, Fenton MB, O’Farrell MJ (1979) Echolocation and pursuit of prey by bats. Science 203:16–21PubMedCrossRefGoogle Scholar
  40. Speakman JR, Racey PA (1991) No cost of echolocation for bats in flight. Nature 350:421–423PubMedCrossRefGoogle Scholar
  41. Surlykke A, Kalko EKV (2008) Echolocating bats cry out loud to detect their prey. PLoS One 3:e2036PubMedCrossRefGoogle Scholar
  42. Surlykke A, Moss CF (2000) Echolocation behavior of big brown bats, Eptesicus fuscus, in the field and the laboratory. J Acoust Soc Am 108:2419–2429PubMedCrossRefGoogle Scholar
  43. Surlykke A, Filskov M, Fullard JH, Forrest E (1999) Auditory relationships to size in noctuid moths: bigger is better. Naturwissenschaften 86:238–241CrossRefGoogle Scholar
  44. Teeling EA, Springer MS, Madsen O, Bates P, O’Brien SJ, Murphy WJCA (2005) Molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584PubMedCrossRefGoogle Scholar
  45. Voigt C, Behr O, Caspers B, von Helversen O, Knörnschild M, Mayer F, Nagy M (2008) Songs, scents, and senses: sexual selection in the greater sac-winged bat, Saccopteryx bilineata. J Mammal 89:1401–1410CrossRefGoogle Scholar
  46. Voigt-Heucke SL, Taborsky M, Dechmann DKN (2010) A dual function of echolocation: bats use echolocation calls to identify familiar and unfamiliar individuals. Anim Behav 80:59–67CrossRefGoogle Scholar
  47. Yancey FD, Goetze HJR, Jones C (1998) Saccopteryx bilineata. Mammal Species 581:1–5Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • John M. Ratcliffe
    • 1
    Email author
  • Lasse Jakobsen
    • 1
  • Elisabeth K. V. Kalko
    • 2
    • 3
  • Annemarie Surlykke
    • 1
  1. 1.Institute of BiologyUniversity of Southern DenmarkOdense MDenmark
  2. 2.Institute of Experimental EcologyUniversity of UlmUlmGermany
  3. 3.Smithsonian Tropical Research InstituteBalboaRepublic of Panama

Personalised recommendations