Journal of Comparative Physiology A

, Volume 197, Issue 2, pp 203–210 | Cite as

Contrast sensitivity in a harbor seal (Phoca vitulina)

  • Frederike D. HankeEmail author
  • Christine Scholtyssek
  • Wolf Hanke
  • Guido Dehnhardt
Original Paper


In this study, the contrast sensitivity function (CSF) of one harbor seal was determined behaviorally in a go-/no-go-experiment at an ambient light of 0.9 lx in air. Contrast sensitivity was assessed as the reciprocal value of the threshold contrast for spatial frequencies varying between 0.03 and 1.5 cycles/deg, which were displayed with contrast ranging from 0.02 to 1 on a TFT monitor with a mean luminance of 3.8 cd/m². The CSF of the harbor seal shows the general characteristics described for other species with a peak at an intermediate frequency, a low frequency roll-off and a high frequency cut-off towards the harbor seal’s resolution limit determined in a previous study. The position of the CSF’s peak lies at approximately 0.5 cycles/deg and adopts an absolute height of 40. These results compare well with the cat’s CSF assessed at a comparable adaptation light which might reflect similarities in lifestyle and optics.


Harbor seal Phoca vitulina Vision Contrast sensitivity Resolution 



The authors would like to acknowledge the valuable help of Viljami Salmela (Helsinki, Finland). Thanks is also expressed to Sophie Fiedler for assistance during data collection and to Christopher D. Marshall (Galveston, TX, USA) for critically reading the manuscript. This study was financially supported by a grant of the Studienstiftung des deutschen Volkes (2005 SA 0969) to FDH and of the Deutsche Forschungsgemeinschaft (SFB 509, DE 538/10-1) as well as the Volkswagenstiftung to GD. The experiments are in line with the current German law on the protection of animals.


  1. Bilotta J, Powers MK (1991) Spatial contrast sensitivity of goldfish: mean luminance, temporal frequency and a new psychophysical technique. Vis Res 31(3):577–585CrossRefPubMedGoogle Scholar
  2. Birch D, Jacobs GH (1979) Spatial contrast sensitivity in albino and pigmented rats. Vis Res 19:933–937CrossRefPubMedGoogle Scholar
  3. Bisti S, Maffei L (1974) Behavioural contrast sensitivity of the cat in various visual meridians. J Physiol 241:201–210PubMedGoogle Scholar
  4. Blake R (1982) Binocular vision in normal and stereoblind subjects. Am J Optom Physiol Opt 59(12):969–975PubMedGoogle Scholar
  5. Blake R, Cool SJ, Crawford MLJ (1974) Visual resolution in the cat. Vis Res 14:1211–1217CrossRefPubMedGoogle Scholar
  6. Campbell FW, Kulikowski JJ, Levinson J (1966) The effect of orientation on the visual resolution of gratings. J Physiol 187:427–436PubMedGoogle Scholar
  7. Campbell FW, Maffei L, Piccolino M (1973) The contrast sensitivity of the cat. J Physiol 229:719–731PubMedGoogle Scholar
  8. Cronin TW (2006) Invertebrate vision in water. In: Warrant EJ, Nilsson D-E (eds) Invertebrate vision. University Press, Cambridge, pp 211–249Google Scholar
  9. Davis RW, Wartzok D, Elsner R, Stone H (1992) A small video camera attached to a Weddell seal: a new way to observe diving behavior. In: Thomas J et al (eds) Marine mammal sensory systems. Plenum, New York, pp 631–642Google Scholar
  10. Davis RW, Fuiman LA, Williams TM, Collier SO, Hagey WP, Kanatous SB, Kohin S, Horning M (1999) Hunting behaviour of a marine mammal beneath the Antarctic fast ice. Science 283:993–996CrossRefPubMedGoogle Scholar
  11. De Valois RL, Morgan H, Snodderly DM (1974) Psychophysical studies of monkey vision—III. Spatial luminance contrast sensitivity tests of macaque and human observers. Vis Res 14:75–81CrossRefPubMedGoogle Scholar
  12. Duntley SQ (1963) Light in the sea. J Opt Soc Am 53:214–233CrossRefGoogle Scholar
  13. Gellermann LW (1933) Chance orders of alternating stimuli in visual discrimination experiments. J Gen Psychol 42:206–208Google Scholar
  14. Ginsburg AP, Evans DW, Sekule R, Harp SA (1982) Contrast sensitivity predicts pilots’ performance in aircraft simulators. Am J Optom Physiol Opt 59(1):105–109PubMedGoogle Scholar
  15. Hanke FD, Dehnhardt G (2009) Aerial visual acuity in harbor seals (Phoca vitulina) as a function of luminance. J Comp Physiol A 195:643–650CrossRefGoogle Scholar
  16. Hanke FD, Dehnhardt G, Schaeffel F, Hanke W (2006) Corneal topography, refractive state, and accommodation in harbor seals (Phoca vitulina). Vis Res 46:837–847CrossRefPubMedGoogle Scholar
  17. Hanke FD, Hanke W, Hoffman K-P, Dehnhardt G (2008a) Optokinetic nystagmus in harbor seals (Phoca vitulina). Vis Res 48(2):304–315CrossRefPubMedGoogle Scholar
  18. Hanke FD, Kröger RHH, Siebert U, Dehnhardt G (2008b) Multifocal lenses in a monochromat: the harbour seal. J Exp Biol 211:3315–3322CrossRefPubMedGoogle Scholar
  19. Hanke FD, Hanke W, Scholtyssek C, Dehnhardt G (2009a) Basic mechanisms in pinniped vision. Exp Brain Res 199(3):299–311CrossRefGoogle Scholar
  20. Hanke FD, Peichl L, Dehnhardt G (2009b) Retinal ganglion cell topography in juvenile harbor seals (Phoca vitulina). Brain Behav Evol 74:102–109CrossRefPubMedGoogle Scholar
  21. Hanke W, Römer R, Dehnhardt G (2006) Visual fields and eye movements in a harbor seal (Phoca vitulina). Vis Res 46:2804–2814CrossRefPubMedGoogle Scholar
  22. Harmening WM, Nikolay P, Orlowski J, Wagner H (2009) Spatial contrast sensitivity and grating acuity of barn owls. J Vis 9(7):1–12CrossRefGoogle Scholar
  23. Hobson ES (1966) Visual orientation and feeding in seals and sea lions. Nature 210:326–327CrossRefGoogle Scholar
  24. Hodos W, Potocki A, Ghim MM, Gaffney M (2003) Temporal modulation of spatial contrast vision in pigeons (Columba livia). Vis Res 43:761–767CrossRefPubMedGoogle Scholar
  25. Jacobs GH (1977) Visual capacities of the owl monkey (Aotus trivirgatus)—II. Spatial contrast sensitivity. Vis Res 17:821–825CrossRefPubMedGoogle Scholar
  26. Jamieson GS, Fisher HD (1972) The pinniped eye: a review. In: Harrison RJ (ed) Functional anatomy of marine mammals. Academic Press, London, pp 245–261Google Scholar
  27. Kang I, Reem RE, Kaczmarowski AL, Malpeli JG (2009) Contrast sensitivity of cats and humans in scotopic and mesopic conditions. J Neurophysiol 102(2):831–840CrossRefPubMedGoogle Scholar
  28. Kröger RHH (2008) The physics of light in air and water. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold—adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 113–119Google Scholar
  29. Kröger RHH, Katzir G (2008) Comparative anatomy and physiology of vision in aquatic tetrapods. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold—adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 121–147Google Scholar
  30. Legg CR (1984) Contrast sensitivity at low spatial frequencies in the hooded rat. Vis Res 24(2):159–161CrossRefPubMedGoogle Scholar
  31. Maffei L, Campbell FW (1970) Neurophysiological localization of the vertical and horizontal visual coordinates in man. Science 167:386–387CrossRefPubMedGoogle Scholar
  32. Mauck B, Dehnhardt G (1997) Mental rotation in a California sea lion (Zalophus californianus). J Exp Biol 200:1309–1316PubMedGoogle Scholar
  33. Merigan WH (1976) The contrast sensitivity of the squirrel monkey (Saimiri sciureus). Vis Res 16:375–379CrossRefPubMedGoogle Scholar
  34. Nordmann JP, Freeman RD, Casanova C (1992) Contrast sensitivity in amblyopia: masking effects of noise. Invest Ophthalmol Vis Sci 33(10):2975–2985PubMedGoogle Scholar
  35. Northmore DPM, Dvorak CA (1979) Contrast sensitivity and acuity of the goldfish. Vis Res 19:255–261CrossRefPubMedGoogle Scholar
  36. Nye PW (1968) The binocular acuity of the pigeon measured in terms of the modulation transfer function. Vis Res 8:1041–1053CrossRefPubMedGoogle Scholar
  37. Olzak LA, Thomas JP (1986) Seeing spatial patterns. In: Boff K, Kaufman L, Thomas JP (eds) Handbook of perception and human performance. Wiley, New York, pp 7.1–7.56Google Scholar
  38. Owsley C, Sloane ME (1987) Contrast sensitivity, acuity, and the perception of ‘real-world’ targets. Br J Ophthalmol 71:791–796CrossRefPubMedGoogle Scholar
  39. Pak MA (1984) Ocular refraction and visual contrast sensitivity of the rabbit, determined by the VECP. Vis Res 24(4):341–345CrossRefPubMedGoogle Scholar
  40. Pasternak T, Merigan WH (1981) The luminance dependence of spatial vision in the cat. Vis Res 21:1333–1339CrossRefPubMedGoogle Scholar
  41. Petry HM, Fox R, Casagrande VA (1984) Spatial contrast sensitivity of the tree shrew. Vis Res 24(9):1037–1042CrossRefPubMedGoogle Scholar
  42. Reuter T, Peichl L (2008) Structure and function of the retina in aquatic tetrapods. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold—adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley, pp 149–172Google Scholar
  43. Reymond L, Wolfe J (1981) Behavioural determination of the contrast sensitivity function of the eagle Aquila audax. Vis Res 21:263–271CrossRefPubMedGoogle Scholar
  44. Scholtyssek C, Kelber A, Dehnhardt G (2008) Brightness discrimination in the harbor seal (Phoca vitulina). Vis Res 48:96–103CrossRefPubMedGoogle Scholar
  45. Schusterman RJ, Balliet RF (1970) Visual acuity of the harbour seal and the Steller sea lion under water. Nature 226:563–564CrossRefPubMedGoogle Scholar
  46. Stich KP, Dehnhardt G, Mauck B (2000) Mental rotation of perspective stimuli in a California sea lion (Zalophus californianus). Brain Behav Evol 61:102–112CrossRefGoogle Scholar
  47. Uhlrich DJ, Essock EA, Lehmkuhle S (1981) Cross-species correspondence of spatial contrast sensitivity functions. Behav Brain Res 2:291–299CrossRefPubMedGoogle Scholar
  48. Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev 79:671–712CrossRefPubMedGoogle Scholar
  49. Weiffen M, Möller B, Mauck B, Dehnhardt G (2006) Effect of water turbidity on the visual acuity of harbor seals (Phoca vitulina). Vis Res 46:1777–1783CrossRefPubMedGoogle Scholar
  50. Woods RL, Wood JM (1995) The role of contrast sensitivity charts and contrast letter charts in clinical practice. Clin Exp Ophthalmol 78(2):43–51Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Frederike D. Hanke
    • 1
    Email author
  • Christine Scholtyssek
    • 1
  • Wolf Hanke
    • 1
  • Guido Dehnhardt
    • 1
  1. 1.Institute for Biosciences, Sensory and Cognitive EcologyUniversity of RostockRostockGermany

Personalised recommendations