Journal of Comparative Physiology A

, Volume 197, Issue 5, pp 541–559

Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals

Review

Abstract

Rhythmical modulations in insect echoes caused by the moving wings of fluttering insects are behaviourally relevant information for bats emitting CF-FM signals with a high duty cycle. Transmitter and receiver of the echolocation system in flutter detecting foragers are especially adapted for the processing of flutter information. The adaptations of the transmitter are indicated by a flutter induced increase in duty cycle, and by Doppler shift compensation (DSC) that keeps the carrier frequency of the insect echoes near a reference frequency. An adaptation of the receiver is the auditory fovea on the basilar membrane, a highly expanded frequency representation centred to the reference frequency. The afferent projections from the fovea lead to foveal areas with an overrepresentation of sharply tuned neurons with best frequencies near the reference frequency throughout the entire auditory pathway. These foveal neurons are very sensitive to stimuli with natural and simulated flutter information. The frequency range of the foveal areas with their flutter processing neurons overlaps exactly with the frequency range where DS compensating bats most likely receive echoes from fluttering insects. This tight match indicates that auditory fovea and DSC are adaptations for the detection and evaluation of insects flying in clutter.

Keywords

Echolocation Bats Auditory fovea Doppler shift compensation Flutter detection 

Abbreviations

BM

Basilar membrane

CF

Constant frequency

CM

Cochlear microphonics

DS

Doppler shift

DSC

Doppler shift compensation

FM

Frequency modulated

HRP

Horseradish peroxidase

IC

Inferior colliculus

N1

Evoked potentials from auditory nerve

N4

Evoked potentials from IC

References

  1. Airapetianz ESh, Konstantinov AI (1970, 1974) Echolocation in animals, 1st and 2nd edn (in Russian) Nauka, Leningrad. English Translation, Israel Program of Scientific Translation, Jerusalem, 1974Google Scholar
  2. Airapetianz ESh, Vasiliev AG (1970) The characteristics of the evoked responses in the auditory system of bats to ultrasonic stimuli of different fill frequency. Sechenov Physiol J 56:1721–1730 (in Russian)Google Scholar
  3. Airapetianz ESh, Vasiliev AG (1971) On neurophysiological mechanism of the echolocating apparatus in bats (frequency parameters). Int J Neurosci 1:279–286CrossRefGoogle Scholar
  4. Aldridge HDJN, Rautenbach LL (1987) Morphology, echolocation and resource partitioning in insectivorous bats. J Anim Ecol 56:763–778CrossRefGoogle Scholar
  5. Bell GP, Fenton MB (1984) The use of Doppler-shifted echoes as a flutter detection and clutter rejection system: the echolocation and feeding behavior of Hipposideros ruber. Behav Ecol Sociobiol 15:109–114CrossRefGoogle Scholar
  6. Bruns V (1976a) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. I. Mechanical specializations of the cochlea. J Comp Physiol 106:77–86CrossRefGoogle Scholar
  7. Bruns V (1976b) Peripheral auditory tuning for fine frequency analysis of the CF-FM bat, Rhinolophus ferrumequinum. II. Frequency mapping in the cochlea. J Comp Physiol 106:87–97CrossRefGoogle Scholar
  8. Bruns V (1980) Basilar membrane and its anchoring system in the cochlea of the Greater Horseshoe bat. Anat Embryol 161:29–50PubMedCrossRefGoogle Scholar
  9. Bruns V, Schmieszek E (1980) Cochlear innervation in the Greater Horseshoe bat: demonstration of an acoustic foyea. Hearing Res 3:27–43CrossRefGoogle Scholar
  10. Covey E, Casseday JH (1995) The lower brainstem auditory pathways. In: Popper AN, Fay RR (eds) Hearing by bats. Springer handbook of auditory research. Springer, Berlin, pp 235–295Google Scholar
  11. Dannhof BJ, Bruns V (1991) The organ of Corti in the bat Hipposideros bicolor. Hear Res 53:253–268PubMedCrossRefGoogle Scholar
  12. Denzinger A, Schnitzler HU (2004) Perceptual tasks in echolocating bats. In: Ilg UJ, Bülthoff HH, Mallot HA (eds) Dynamic perception. Akademische Verlagsgesellschaft, Berlin, pp 33–38Google Scholar
  13. Fenton MB (1990) The foraging behaviour and ecology of animal-eating bats. Can J Zool 68:411–422CrossRefGoogle Scholar
  14. Fenton MB (1995) Natural history and biosonar signals. In: Popper AN, Fay RR (eds) Hearing by bats. Springer, Berlin, pp 37–86Google Scholar
  15. Fu ZY, Tang J, Jen PHS, Chen QC (2010) The auditory response properties of singe-on and double-on responders in the inferior colliculus of the leaf-nosed bat, Hipposideros armiger. Brain Res 1306:39–52PubMedCrossRefGoogle Scholar
  16. Gaioni SJ, Riquimaroux H, Suga N (1990) Biosonar behavior of mustached bats swung on a pendulum prior to cortical ablation. J Neurophysiol 64:1801–1817PubMedGoogle Scholar
  17. Goiti U, Aihartza JR, Garin I (2004) Diet and prey selection in the Mediterraniean horseshoe bat Rhinolophus euryale (Chiroptera, Rhinolophidae) during the pre-breeding season. Mammalia 68(4):397–402CrossRefGoogle Scholar
  18. Goldman LJ, Henson OW Jr (1977) Prey recognition and selection by the constant frequency bat, Pteronotus p parnellii. Behav Ecol Sociobiol 2:411–419CrossRefGoogle Scholar
  19. Griffin DR (1958) Listening in the dark. Yale University Press, New HavenGoogle Scholar
  20. Grinnell AD (1967) Mechanisms of overcoming interference in echolocating animals. In: Busnel RG (ed) Animal sonar systems, vol I. Laboratoire de Physiologie acoustique, Jouy-en-Josas, pp 451–481Google Scholar
  21. Grinnell AD (1970) Comparative auditory neurophysiology of neotropical bats employing different echolocation signals. Z Vergl Physiol 68:117–153CrossRefGoogle Scholar
  22. Grinnell AD, Hagiwara S (1972) Adaptations of the auditory nervous system for echolocation. Z Vergl Physiol 76:41–81CrossRefGoogle Scholar
  23. Gustafson Y, Schnitzler HU (1979) Echolocation and obstacle avoidance in the hipposiderid bat Asellia tridens. J Comp Physiol A 131:161–167CrossRefGoogle Scholar
  24. Habersetzer J, Storch G (1992) Cochlea size in extant chiroptera and middle eozene microchiropterans from Messel. Naturwissenschaften 79:462–466CrossRefGoogle Scholar
  25. Habersetzer J, Schuller G, Neuweiler G (1984) Foraging behavior and Doppler shift compensation in echolocating hipposiderid bats, Hipposideros bicolor and Hipposideros speoris. J Comp Physiol 155:559–567CrossRefGoogle Scholar
  26. Heilmann U (1984) Das Frequenzunterscheidungsvermögen bei der Großen Hufeisennase, Rhinolophus ferrumequinum. Thesis, University TübingenGoogle Scholar
  27. Henson MM (1978) The basilar membrane of the bat, Pteronotus p. parnellii. Am J Anat 153:143–158PubMedCrossRefGoogle Scholar
  28. Henson MM, Henson OW Jr (1988) Tension fibroblasts and the connective tissue matrix of the spiral ligament. Hear Res 35:237–258PubMedCrossRefGoogle Scholar
  29. Henson MM, Henson OW Jr (1991) Specializations for sharp tuning in the mustached bat: the tectorial membrane and the spiral limbus. Hear Res 35:237–258CrossRefGoogle Scholar
  30. Henson MM, Henson OW Jr, Goldman LJ (1977) The perilymphatic spaces in the cochlea of the bat, Pteronotus p. parnellii (Gray). Anim Rec 187:767Google Scholar
  31. Henson OW Jr, Henson MM, Kobler JB, Pollak GD (1980) The constant frequency component of the biosonar signals of the bat, Pteronotus parnellii. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum Press, New York, pp 913–916Google Scholar
  32. Henson OW Jr, Pollak GD, Kobler JB, Henson MM, Goldman LJ (1982) Cochlear microphonic potentials elicited by biosonar signals in flying bats, Pteronotus p. parnellii. Hearing Res 7:127–147CrossRefGoogle Scholar
  33. Henson OW Jr, Schuller G, Vater M (1985) A comparative study of the physiological properties of the inner ear in Doppler shift compensating bats (Rhinolophus rouxi and Pteronotus parnellii). J Comp Physiol A 157:587–597PubMedCrossRefGoogle Scholar
  34. Henson OW Jr, Bishop AL, Keating AW, Kobler JB, Henson MM, Wilson BS, Hansen R (1987) Bisonar imaging of insects by Pteronotus p. parnellii, the mustached bat. Nat Geogr Res 3:82–101Google Scholar
  35. Hiryu S, Katsura K, Lin LK, Riquimaroux H, Watanabe Y (2005) Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight. J Acoust Soc Am 118:3927–3933PubMedCrossRefGoogle Scholar
  36. Hiryu S, Shiori Y, Hosokawa T, Riquimaroux H, Watananbe Y (2008) On-board telemetry of emitted sound from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude. J Comp Physiol 194:841–851CrossRefGoogle Scholar
  37. Jen PH, Kamada T (1982) Analysis of orientation signals emitted by the CF-FM bat, Pteronotus p. parnellii and the FM bat, Eptesicus fuscus during avoidance of moving and stationary obstacle. J Comp Physiol A 148:389–398CrossRefGoogle Scholar
  38. Jen PH, Suthers RA (1982) Responses of inferior colliculus neurons to acoustic stimuli in certain FM and CF-FM paleotropical bats. J Comp Physiol 146:423–434CrossRefGoogle Scholar
  39. Jin L, Feng J, Sun K, Liu Y, Wu L, Li Z, Zhang X (2005) Foraging strategies in the greater horseshoe bat (Rhinolophus ferrumequinum) on Lepidoptera in summer. Chin Sci Bull 50(14):1477–1482CrossRefGoogle Scholar
  40. Jones G (1990) Prey selection by the greater horseshoe bat (Rhinolophus ferrumequinum): optimal foraging by echolocation? J Anim Ecol 59:587–602CrossRefGoogle Scholar
  41. Jones G, Rayner JMV (1989) Foraging behavior and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R hipposideros (Chiroptera, Rhinolophidae). Behav Ecol Sociobiol 25:183–191CrossRefGoogle Scholar
  42. Keating AW, Henson OW, Henson MM, Lancaster WC, Xie DH (1994) Doppler-shift compensation by the mustached bat: quantitative data. J Exp Biol 188:115–129PubMedGoogle Scholar
  43. Kober R (1988) Echoes of fluttering insects. In: Nachtigall PE, Moore PWB (eds) Animal sonar processes and performance. Plenum Press, New York, pp 477–481Google Scholar
  44. Kober R, Schnitzler HU (1990) Information in sonar echoes of fluttering insects available for echolocating bats. J Acoust Soc Am 87:882–896CrossRefGoogle Scholar
  45. Kobler JB, Wilson BS, Henson OW Jr, Bishop AL (1985) Echo intensity compensation by echolocating bats. Hear Res 20:99–108PubMedCrossRefGoogle Scholar
  46. Konstantinov AI, Makarov AK, Sokolov BV (1978) Dopplerpulse sonar system in Rhinolophus ferrumequinum. Kenya National Acad. For Advancement of Arts and Science, pp 155–163Google Scholar
  47. Kössl M, Vater M (1985a) Evoked acoustic emissions and cochlear microphonics in the mustache bat Pteronotus p. parnellii. Hear Res 19:157–170PubMedCrossRefGoogle Scholar
  48. Kössl M, Vater M (1985b) The cochlear frequency map of the mustached bat, Pteronotus parnellii. J Comp Physiol A 157:687–697PubMedCrossRefGoogle Scholar
  49. Kössl M, Vater M (1995) Cochlear structure and function in bats. In: Popper AN, Fay RR (eds) Hearing by bats. Springer, Berlin, pp 191–234Google Scholar
  50. Lancaster WC, Keating AW, Henson OW Jr (1992) Ultrasonic vocalizations of flying bats monitored by radiotelemetry. J Exp Biol 173:43–58PubMedGoogle Scholar
  51. Link A, Marimuthu G, Neuweiler G (1986) Movement as a specific stimulus for prey catching behaviour in rhinolophid and hipposiderid bats. J Comp Physiol A 159:403–413CrossRefGoogle Scholar
  52. Long GR, Schnitzler HU (1975) Behavioural audiograms from the bat, Rhinolophus ferrumequinum. J Comp Physiol 100:211–219CrossRefGoogle Scholar
  53. Metzner W (1993) An audio–vocal interface in echolocating horseshoe bats. J Neurosci 13:1899–1915PubMedGoogle Scholar
  54. Möller J, Neuweiler G, Zöller H (1978) Response characteristics of inferior colliculus neurons of the awake cf-fm bat Rhinolophus ferrumequinum. J Comp Physiol 125:217–225CrossRefGoogle Scholar
  55. Neuweiler G (1970) Neurophysiologische Untersuchungen zum Echoortungssystem der Grossen Hufeisennase Rhinolophus ferrumequinum. Z Vergl Physiol 67:273–306CrossRefGoogle Scholar
  56. Neuweiler G (1980) Auditory processing of echoes: peripheral processing. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum Press, New York, pp 519–548Google Scholar
  57. Neuweiler G (1983) Echolocation and adaptivity to ecological constraints. In: Huber F, Markl H (eds) Neuroethology and behavioural physiology. Springer, Berlin, pp 280–302Google Scholar
  58. Neuweiler G (1984) Foraging, echolocation and audition in bats. Naturwissenschaften 71:446–455CrossRefGoogle Scholar
  59. Neuweiler G (1989) Foraging ecology and audition in echolocating bats. Trends Ecol Evol 4:160–166PubMedCrossRefGoogle Scholar
  60. Neuweiler G (1990) Auditory adaptations for prey capture in echolocating bats. Physiol Rev 70:615–641PubMedGoogle Scholar
  61. Neuweiler G (1993) Biologie der Fledermäuse. Thieme Verlag, StuttgartGoogle Scholar
  62. Neuweiler G (2000) Biology of bats. Oxford University Press, New YorkGoogle Scholar
  63. Neuweiler G (2003) Evolutionary aspects of bat echolocation. J Comp Physiol A 189:245–256Google Scholar
  64. Neuweiler G, Fenton MB (1988) Behaviour and foraging ecology of echolocating bats. In: Nachtigall PE, Moore PWB (eds) Animal sonar processes and performance. Plenum Press, New York, pp 535–549Google Scholar
  65. Neuweiler G, Schmidt S (1993) Audition in echolocating bats. Curr Opin Neurobiol 3:563–569PubMedCrossRefGoogle Scholar
  66. Neuweiler G, Vater M (1977) Response patterns to pure tones of cochlear nucleus units in the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol 115:119–133CrossRefGoogle Scholar
  67. Neuweiler G, Schuller G, Schnitzler HU (1971) On- and off-responses in the inferior colliculus of the Greater Horseshoe bat to pure tones. Z vergl Physiol 74:57–63CrossRefGoogle Scholar
  68. Neuweiler G, Bruns V, Schuller G (1980) Ears adapted for detection of motion, or how echolocating bats have exploited the capacities of the mammalian auditory system. J Acoust Soc Am 68:741–753CrossRefGoogle Scholar
  69. Neuweiler G, Singh S, Sripathi K (1984) Audiograms of a South Indian bat community. J Comp Physiol A 154:133–142CrossRefGoogle Scholar
  70. Neuweiler G, Metzner W, Heilmann U, Rübsamen R, Eckrich M, Costa HH (1987) Foraging behaviour and echolocation in the rufous horseshoe bat of Sri Lanka. Behav Ecol Sociobiol 20:53–67CrossRefGoogle Scholar
  71. O’Neill WE (1995) The bat auditory cortex. In: Popper AN, Fay RR (eds) Hearing by bats. Springer, Berlin, pp 416–480Google Scholar
  72. Ostwald J (1980) The functional organisation of the auditory cortex in the CF-FM bat Rhinolophus ferrumequinum. In: Busnel RG, Fish JF (eds) Animal Sonar Systems. Plenum Press, New York, pp 953–955Google Scholar
  73. Ostwald J (1984) Tonotopical organization and pure tone response characteristics of single units in the auditory cortex of the Greater Horseshoe bat. J Comp Physiol A 155:821–834CrossRefGoogle Scholar
  74. Ostwald J (1988) Encoding of natural insect echoes and sinusoidally modulated stimuli by neurons in the auditory cortex of the Greater Horseshoe bat, Rhinolophus ferrumequinum. In: Nachtigal PE, Moore PWB (eds) Animal Sonar processes and performance. Plenum Press, New York, pp 483–487Google Scholar
  75. Ostwald J, Schnitzler HU, Schuller G (1988) Target discrimination and target classification in echolocating bats. In: Nachtigall PE, Moore PWB (eds) Animal sonar processes and performance. Plenum Press, New York, pp 413–434Google Scholar
  76. Peters A (1987) Analyse der Frequenzrepräsentation im Innenohr der echoortenden Fledermaus Hipposideros lankadiva. Diploma Thesis, University MunichGoogle Scholar
  77. Pollak GD, Bodenhamer RD (1981) Specialized characteristics of single units in inferior colliculus of mustached bats: frequency representation, tuning and discharge patterns. J Neurophysiol 46:605–620PubMedGoogle Scholar
  78. Pollak GD, Park TJ (1995) The inferior colliculus. In: Popper AN, Fay RR (eds) Hearing by bats. Springer, Berlin, pp 296–367Google Scholar
  79. Pollak GD, Schuller G (1981) Tonotopic organisation and encoding features of single units in inferior colliculus of horseshoe bats: functional implications for prey identification. J Neurophysiol 45(2):208–226PubMedGoogle Scholar
  80. Pollak GD, Henson OW Jr, Novick A (1972) Cochlear microphonic audiograms in the “pure” tone bat, Chilonycteris parnellii. Science 176:66–68PubMedCrossRefGoogle Scholar
  81. Pye JD (1967) Discussion of the paper of Griffith. In: Busnel RG (ed) Animal sonar systems, vol II. Laboratoire de Physiologie acoustique, Jouy-en-Josas, pp 1121–1136Google Scholar
  82. Pye JD (1980) Echolocation signals and echoes in air. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum Press, New York, pp 309–353Google Scholar
  83. Radke-Schuller S, Schuller G (1995) Auditory cortex of the rufous horseshoe bat: 1 Physiological response properties to acoustic stimuli and vocalizations and the topographical distribution of neurons. Eur J Neurosci 7:570–591CrossRefGoogle Scholar
  84. Reimer K (1987) Coding of sinusoidally modulated acoustic stimuli in the inferior colliculus of the rufous horseshoe bat, Rhinolophus rouxi. J Comp Physiol 161:305–313CrossRefGoogle Scholar
  85. Roverud RC, Nitsche V, Neuweiler G (1991) Discrimination of wingbeat motion by bats, correlated with echolocation sound pattern. J Comp Physiol A 168:259–263PubMedCrossRefGoogle Scholar
  86. Rübsamen R, Neuweiler G, Sripathi K (1988) Comparative collicular tonotopy in two bat species adapted to movement detection, Hipposideros speoris and Megaderma lyra. J Comp Physiol 163:271–285CrossRefGoogle Scholar
  87. Salsamendi E, Garin I, Almenar D, Goiti U, Napal M, Aihartza J (2008) Diet and prey selection in Mehelyi’s horseshoe bat Rhinolophus mehelyi (Chiroptera, Rhinolophidae) in the south-western Iberian Peninsula. Acta Chiropterologica 10(2):279–286CrossRefGoogle Scholar
  88. Schlegel P (1977) Directional coding by brainstem units of the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol 118:327–352CrossRefGoogle Scholar
  89. Schnitzler HU (1967) Kompensation von Dopplereffekten bei Hufeisen-Fledermäusen. Naturwissenschaften 54:523–524PubMedCrossRefGoogle Scholar
  90. Schnitzler H-U (1968) Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera - Rhinolophidae) in verschiedenen Orientierungs-Situationen. Z Vergl Physiol 57:376–408CrossRefGoogle Scholar
  91. Schnitzler H-U (1970a) Comparison of echolocation behavior in Rhinolophus ferrumequinum and Chilonycteris rubiginosa. Bijdr Dierk 40:77–80Google Scholar
  92. Schnitzler H-U (1970b) Echoortung bei der Fledermaus Chilonycteris rubiginosa. Z Vergl Physiol 68:25–39CrossRefGoogle Scholar
  93. Schnitzler HU (1973) Control of Doppler shift compensation in the Greater Horseshoe Bat, Rhinolophus ferrumequinum. J Comp Physiol 82:79–92CrossRefGoogle Scholar
  94. Schnitzler HU (1978) Die Detektion von Bewegungen durch Echoortung bei Fledermäusen. Verh Dtsch Zool Ges 71:16–33Google Scholar
  95. Schnitzler HU (1987) Echoes of fluttering insects: information for echolocating bats. In: Fenton MB, Racey P, Rayner JMV (eds) Recent advances in the study of bats. Cambridge University Press, CambridgeGoogle Scholar
  96. Schnitzler HU, Flieger E (1983) Detection of oscillating target movements by echolocation in the greater horseshoe bat. J Comp Physiol A 153:385–391CrossRefGoogle Scholar
  97. Schnitzler HU, Henson OW Jr (1980) Performance of airborne animal sonar systems. I. Microchiroptera. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum Press, NewYork, pp 109–181Google Scholar
  98. Schnitzler HU, Kalko EKV (2001) Echolocation by insect-eating bats. Bioscience 51:557–569CrossRefGoogle Scholar
  99. Schnitzler HU, Ostwald J (1983) Adaptation for the detection of fluttering insects by echolocation in horseshoe bats. In: Ewert JP, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 801–827Google Scholar
  100. Schnitzler HU, Schuller G, Neuweiler G (1971) Antworten des Colliculus inferior der Fledermaus Rhinolophus euryale auf tonale Reizung. Naturwissenschaften 58:627–628CrossRefGoogle Scholar
  101. Schnitzler H-U, Suga N, Simmons JA (1976) Peripheral auditory tuning for fine frequency analysis in the CF-FM bat, Rhinolophusferrumequinum. J Comp Physiol 106:99–110CrossRefGoogle Scholar
  102. Schnitzler HU, Menne D, Kober R, Heblich K (1983) The acoustical image of fluttering insects in echolocating bats. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin, pp 235–250Google Scholar
  103. Schnitzler HU, Hackbarth H, Heilmann U, Herbert H (1985) Echolocation behavior of Rufous Horseshoe bats hunting for insects in flycatcher-style. J Comp Physiol 157:39–46CrossRefGoogle Scholar
  104. Schnitzler HU, Moss CF, Denzinger A (2003) From spatial orientation to food acquisition in echolocating bats. Trends Ecol Evol 18:386–394CrossRefGoogle Scholar
  105. Schuller G (1972) Echoortung bei Rhinolophus ferrumequinum mit frequenzmodulierten Lauten. J Comp Physiol 77:306–331CrossRefGoogle Scholar
  106. Schuller G (1979) Coding of small sinusoidal frequency and amplitude modulations in the inferior colliculus of the CF-FM bat, Rhinolophus ferrumequinum. Exp Brain Res 34:117–132PubMedCrossRefGoogle Scholar
  107. Schuller G (1980) Hearing characteristics and Doppler compensation in South Indian CF-FM bats. J Comp Physiol 139:349–356CrossRefGoogle Scholar
  108. Schuller G (1984) Natural ultrasonic echoes from wing beating insects are encoded by collicular neurons in the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol 155:121–128CrossRefGoogle Scholar
  109. Schuller G, Moss C (2004) Vocal control and acoustically guided behaviour in bats. In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphins. University of Chicago Press, Chicago, pp 3–16Google Scholar
  110. Schuller G, Pollak GD (1979) Disproportionate frequency representation in the inferior colliculus of horseshoe bats: evidence for an acoustic fovea. J Comp Physiol 132:47–54CrossRefGoogle Scholar
  111. Schuller G, Neuweiler G, Schnitzler HU (1971) Collicular responses to the frequency modulated final part of echolocation sounds in Rhinolophus ferrumequinum. Z Vergl Physiol 74:153–155CrossRefGoogle Scholar
  112. Schuller G, Beuter K, Schnitzler HU (1974) Response to frequency shifted artificial echoes in the bat Rhinolophus ferrumequinum. J Comp Physiol A 89:275–286CrossRefGoogle Scholar
  113. Schuller G, Beuter K, Rübsamen R (1975) Dynamic properties of the compensation system for Doppler shifts in the bat, Rhinolophus ferrumequinum. J Comp Physiol 97:113–125CrossRefGoogle Scholar
  114. Schuller G, O’Neill WE, Radtke-Schuller S (1991) Facilitation and delay sensitivity of auditory cortex neurons in CF-FM bats Rhinolophus rouxi and Pteronotus p. parnellii. Eur J Neurosci 3:1165–1181PubMedCrossRefGoogle Scholar
  115. Siemers BM, Ivanova T (2004) Ground gleaning in horseshoe bats: comparative evidence from Rhinolophus blasii, R. euryale and R. mehelyi. Behav Ecol Sociobiol 56:464–471Google Scholar
  116. Simmons JA (1974) Response of the Doppler echolocation system in the bat, Rhinolophus ferrumequinum. J Acoust Soc Am 56:672–682PubMedCrossRefGoogle Scholar
  117. Smotherman M, Metzner W (2003) Fine control of call frequency by horseshoe bats. J Comp Physiol A 189:435–446CrossRefGoogle Scholar
  118. Suga N (1973) Feature extraction in the auditory system of bats: In: Moeller AR (ed) Basic mechanisms in hearing. Academic Press, New York, pp 675–744Google Scholar
  119. Suga N (1984) The extent to which biosonar information is represented in the bat auditory cortex. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic aspects of neocortical function. Wiley, New York, pp 315–373Google Scholar
  120. Suga N (1990) Biosonar and neural computation in bats. Sci Am 262(6):60–68PubMedCrossRefGoogle Scholar
  121. Suga N (1994) Multi-function theory for cortical processing of auditory information: implication of single-unit and lesion data for future research. J Comp Physiol 175:135–144CrossRefGoogle Scholar
  122. Suga N, Jen PH (1976) Disproportionate tonotopic representation for processing CF-FM sonar signals in the mustache bat auditory cortex. Science 194:542–544PubMedCrossRefGoogle Scholar
  123. Suga N, Jen PH-S (1977) Further studies on the peripheral auditory system of ‘CF-FM’ bats specialized for fine frequency analysis of Doppler-shifted echoes. J Exp Biol 69:207–232PubMedGoogle Scholar
  124. Suga N, O’Neill W (1980) Auditory processing of echoes: representation of acoustic information from the environment in the bat cerebral cortex. In: Busnell RG, Fish JF (eds) Animal sonar systems. Plenum Press, New York, pp 589–615Google Scholar
  125. Suga N, Simmons JA, Shimozawa T (1974) Neurophysiological studies on echolocation systems in awake bats producing CF-FM orientation sounds. J Exp Biol 61:379–399PubMedGoogle Scholar
  126. Suga N, Simmons JA, Jen PH-S (1975) Peripheral specializations in fine frequency analysis of Doppler-shifted echoes in the auditory system of the CF-FM bat Pteronotus parnellii. J Exp Biol 63:161–192PubMedGoogle Scholar
  127. Suga N, Neuweiler G, Möller J (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. IV. Properties of peripheral auditory neurons. J Comp Physiol 106:111–125CrossRefGoogle Scholar
  128. Suga N, Niwa H, Taniguchi I (1983) Representation of biosonar information in the auditory cortex of the mustached bat, with emphasis on representation of target velocity information. In: Ewert JP, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 829–876Google Scholar
  129. Suga N, Niwa H, Taniguchi I, Margoliash D (1987) The personalized auditory cortex of the mustached bat: adaptation for echolocation. J Neurophysiol 58:643–654PubMedGoogle Scholar
  130. Taniguchi I (1985) Echolocation sounds and hearing of the greater Japanese horseshoe bat (Rhinolophus ferrumequinum nippon). J Comp Physiol A 156:185–188CrossRefGoogle Scholar
  131. Tian B, Schnitzler HU (1997) Echolocation signals of the Greater Horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing. J Acoust Soc Am 101:2347–2364PubMedCrossRefGoogle Scholar
  132. Trappe M, Schnitzler HU (1982) Doppler-shift compensation in insect-catching horseshoe bats. Naturwissenschaften 69:193–194CrossRefGoogle Scholar
  133. Vasiliev AG (1971) Characteristics of electric responses of the cochlear nuclei in Vespertilionidae and Rhinolophidae to ultra-sonic stimuli with different fill frequency. Neirophysiologica 4:379–385 (in Russian)Google Scholar
  134. Vasiliev AG (1975) Characteristics of unit responses of the cochlear nuclei of bats Rhinolophidae to single and paired ultrasonic stimuli. Neurophysiology 7:195–199 English translationCrossRefGoogle Scholar
  135. Vasiliev AG (1976) Characteristics of the responses of neurons in the superior olive of bats in response to single and paired ultrasonic stimuli. Neirofiziologiya 8:30–38 (in Russian)Google Scholar
  136. Vasiliev AG, Andreeva NG (1971) Characteristics of the electric responses of medial geniculate body of Vespertilionidae and Rhinolophidae to ultrasonic stimuli with different fill frequency. Neirofiziologiya 3:138–144 (in Russian)Google Scholar
  137. Vasiliev AG, Timoshenko TE (1973) Characteristics of electric responses of superior olivary complex in Vespertilionidae and Rhinolophidae bats to ultrasonic stimuli with different fill frequency. Neirofiziologiya 5:33–39 (in Russian)Google Scholar
  138. Vater M (1987) Narrow-band frequency analysis in bats. In: Fenton MB, Racey P, Rayner JMV (eds) Recent advances in the study of bats. Cambridge University Press, Cambridge, pp 200–225Google Scholar
  139. Vater M (1988) Cochlear physiology and anatomy in bats. In: Nachtigall PE, Moore PWB (eds) Animal sonar. Plenum Press, New York, pp 225–242Google Scholar
  140. Vater M (1998) Adaptations of the auditory periphery of bats for echolocation. In: Kunz TH, Racey PA (eds) Bat biology and conservation. Smithonian Institution Press, Washington, DC, pp 231–247Google Scholar
  141. Vater M, Kössl M (2004) The ears of whales and bats. In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphins. University of Chicago Press, Chicago, pp 89–99Google Scholar
  142. Vater M, Lenoir M (1992) Ultrastructure of the horseshoe bat’s organ of Corti. I. Scanning electron microscopy. J Comp Neurol 318:367–379PubMedCrossRefGoogle Scholar
  143. Vater M, Feng AS, Betz M (1985) An HRP-study of the frequency-place map of the horseshoe bat cochlea: morphological correlates of the sharp tuning to a narrow frequency band. J Comp Physiol 157:671–686CrossRefGoogle Scholar
  144. Vater M, Lenoir M, Pujol R (1992) Ultrastructure of the horseshoe bat’s organ of Corti. II. Transmission electron microscopy. J Comp Neurol 318:380–391PubMedCrossRefGoogle Scholar
  145. Vogler B, Neuweiler G (1983) Echolocation in the noctule (Nyctalus noctula) and horseshoe bat (Rhinolophus ferrumequinum). J Comp Physiol A 152:421–432CrossRefGoogle Scholar
  146. von der Emde G, Menne D (1989) Discrimination of insect wingbeat-frequencies by the bat Rhinolophus ferrumequinum. J Comp Physiol A 164:663–671CrossRefGoogle Scholar
  147. von der Emde G, Schnitzler HU (1986) Fluttering target detection in hipposiderid bats. J Comp Physiol A 159:765–772CrossRefGoogle Scholar
  148. von der Emde G, Schnitzler HU (1990) Classification of insects by echolocating greater horseshoe bats. J Comp Physiol A 167:423–430Google Scholar
  149. Wenstrup JJ (1995) The auditory thalamus in bats. In: Popper AN, Fay RR (eds) Hearing by bats. Springer, Berlin, pp 368–415Google Scholar
  150. Zook JM, Leake PA (1989) Connections and frequency representation in the auditory brainstem of the mustache bat, Pteronotus parnellii. J Comp Neurol 290:243–261PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Animal PhysiologyInstitute of Neurobiology, University of TuebingenTübingenGermany

Personalised recommendations