Journal of Comparative Physiology A

, Volume 197, Issue 5, pp 447–457 | Cite as

The communicative potential of bat echolocation pulses



Ecological constraints often shape the echolocation pulses emitted by bat species. Consequently some (but not all) bats emit species-specific echolocation pulses. Because echolocation pulses are often intense and emitted at high rates, they are potential targets for eavesdropping by other bats. Echolocation pulses can also vary within species according to sex, body size, age, social group and geographic location. Whether these features can be recognised by other bats can only be determined reliably by playback experiments, which have shown that echolocation pulses do provide sufficient information for the identification of sex and individual in one species. Playbacks also show that bats can locate conspecifics and heterospecifics at foraging and roost sites by eavesdropping on echolocation pulses. Guilds of echolocating bat species often partition their use of pulse frequencies. Ecology, allometric scaling and phylogeny play roles here, but are not sufficient to explain this partitioning. Evidence is accumulating to support the hypothesis that frequency partitioning evolved to facilitate intraspecific communication. Acoustic character displacement occurs in at least one instance. Future research can relate genetic population structure to regional variation in echolocation pulse features and elucidate those acoustic features that most contribute to discrimination of individuals.


Signalling Biosonar Auditory Vocalisations Eavesdropping 



We thank Leonie Baier for preparing Fig. 1, Maike Schuchmann, Irek Ruczynski and two anonymous reviewers for comments.


  1. Armstrong KN, Coles RB (2007) Echolocation call frequency differences between geographic isolates of Rhinonicteris aurantia (Chiroptera: Hipposideridae): implications of nasal chamber size. J Mammal 88:94–104CrossRefGoogle Scholar
  2. Barclay RMR (1982) Interindividual use of echolocation calls—eavesdropping by bats. Behav Ecol Sociobiol 10:271–275CrossRefGoogle Scholar
  3. Barclay RMR (1999) Bats are not birds—a cautionary note on using echolocation calls to identify bats: a comment. J Mammal 80:290–296CrossRefGoogle Scholar
  4. Bastian A, Schmidt S (2008) Affect cues in vocalizations of the bat, Megaderma lyra during agonistic interactions. J Acoust Soc Am 124:598–608PubMedCrossRefGoogle Scholar
  5. Bohn KM, Moss CF, Wilkinson GS (2006) Correlated evolution between hearing sensitivity and social calls in bats. Biol Lett 2:561–564PubMedCrossRefGoogle Scholar
  6. Bohn KM, Schmidt-French B, Ma ST, Pollak GD (2008) Syllable acoustics, temporal patterns, and call composition vary with behavioral context in Mexican free-tailed bats. J Acoust Soc Am 124:1838–1848PubMedCrossRefGoogle Scholar
  7. Boughman JW (1997) Greater spear-nosed bats give group-distinctive calls. Behav Ecol Sociobiol 40:61–70CrossRefGoogle Scholar
  8. Boughman JW, Wilkinson GS (1998) Greater spear-nosed bats discriminate group mates by vocalizations. Anim Behav 55:1717–1732PubMedCrossRefGoogle Scholar
  9. Bradbury JW, Vehrencamp SL (1998) Principles of animal communication. Sinauer Associates Inc., SunderlandGoogle Scholar
  10. Brigham RM, Cebek JE, Hickey MBC (1989) Intraspecific variation in the echolocation calls of two species of insectivorous bats. J Mammal 70:426–428CrossRefGoogle Scholar
  11. Britton ARC, Jones G (1999) Echolocation behaviour and prey-capture success in foraging bats: laboratory and field experiments on Myotis daubentonii. J Exp Biol 202:1793–1801PubMedGoogle Scholar
  12. Burnett SC, Kazial KA, Masters WM (2001) Discriminating individual big brown bat (Eptesicus fuscus) sonar vocalizations in different recording situations. Bioacoustics 11:189–210Google Scholar
  13. Chen S-F, Jones G, Rossiter SJ (2009) Determinants of echolocation call frequency in the Formosan lesser horseshoe bat (Rhinolophus monoceros). Proc R Soc Lond B Biol Sci 276:3901–3909CrossRefGoogle Scholar
  14. Chiu C, Xian W, Moss CF (2008) Flying in silence: echolocating bats cease vocalizing to avoid sonar jamming. Proc Natl Acad Sci USA 105:13116–13121PubMedCrossRefGoogle Scholar
  15. Cooper SJB, Day PR, Reardon TB, Schulz M (2001) Assessment of species boundaries in Australian Myotis (Chiroptera: Vespertilionidae) using mitochondrial DNA. J Mammal 82:328–338CrossRefGoogle Scholar
  16. Crockford C, Herbinger I, Vigilant L, Boesh C (2004) Wild chimpanzees produce group-specific calls: a case for vocal learning? Ethology 110:221–243CrossRefGoogle Scholar
  17. Danchin E, Giraldeau L-A, Valone TJ, Wagner RH (2004) Public information: from noisy neighbours to cultural evolution. Science 305:487–491PubMedCrossRefGoogle Scholar
  18. Dechmann DKN, Heucke SL, Giuggioli L, Safi K, Voigt CC, Wikelski M (2009) Experimental evidence for group hunting via eavesdropping in echolocating bats. Proc R Soc Lond B Biol Sci 276:2721–2728CrossRefGoogle Scholar
  19. Duellman WE, Pyles RA (1983) Acoustic resource partitioning in anuran communities. Copeia 1983:639–649CrossRefGoogle Scholar
  20. Esser K-H (1994) Audio-vocal learning in a non-human mammal: the lesser spear-nosed bat Phyllostomus discolor. Neuroreport 5:1718–1720PubMedCrossRefGoogle Scholar
  21. Fenton MB (1985) Communication in the Chiroptera. Indiana University Press, BloomingtonGoogle Scholar
  22. Fenton MB (1994) Assessing signal variability and reliability: to thine ownself be true. Anim Behav 47:757–764CrossRefGoogle Scholar
  23. Fenton MB (2003) Eavesdropping on the echolocation and social calls of bats. Mamm Rev 33:193–204CrossRefGoogle Scholar
  24. Fenton MB, Jacobs DS, Richardson EJ, Taylor PJ, White W (2004) Individual signatures in the frequency-modulated sweep calls of large African large-eared free-tailed bats (Otomops martiensseni; Chiroptera: Molossidae). J Zool Lond 262:11–19CrossRefGoogle Scholar
  25. Flanders JR, Jones G, Benda P, Dietz C, Zhang S, Li G, Sharifi M, Rossiter SJ (2009) Phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum: contrasting results from mitochondrial and microsatellite data. Mol Ecol 18:306–318PubMedCrossRefGoogle Scholar
  26. Gerlinde H, Gerhardt C (2003) Reproductive character displacement in the acoustic communication of green tree frogs (Hyla cinerea). Evolution 57:894–904Google Scholar
  27. Gillam EH (2007) Eavesdropping by bats on the feeding buzzes of conspecifics. Can J Zool 85:795–801CrossRefGoogle Scholar
  28. Gillam EH, McCracken GF (2007) Variability in the echolocation of Tadarida brasiliensis: effects of geography and local acoustic environment. Anim Behav 74:277–286CrossRefGoogle Scholar
  29. Grilliot ME, Burnett SC, Mendonca MT (2009) Sexual dimorphism in big brown bat (Eptesicus fuscus): ultrasonic vocalizations is context dependent. J Mammal 90:203–209CrossRefGoogle Scholar
  30. Guillén A, Juste JB, Ibáñez C (2000) Variation in the frequency of the echolocation calls of Hipposideros ruber in the Gulf of Guinea: an exploration of the adaptive meaning of the constant frequency value in rhinolophoid CF bats. J Evol Biol 13:70–80CrossRefGoogle Scholar
  31. Heller K-G, von Helversen O (1989) Resource partitioning of sonar frequency bands in rhinolophoid bats. Oecologia 80:178–186Google Scholar
  32. Hiryu S, Katsura K, Nagato T, Yamazaki H, Lin LK, Watanabe Y, Riquimaroux H (2006) Intra-individual variation in the vocalized frequency of the Taiwanese leaf-nosed bat, Hipposideros terasensis, influenced by conspecific colony members. J Comp Physiol A 192:807–815CrossRefGoogle Scholar
  33. Hoffmann FF, Hejduk J, Caspers B, Siemers BM, Voigt CC (2007) In the mating system of the bat Saccopteryx bilineata (Chiroptera; Emballonuridae) bioacoustic constraints impede male eavesdropping on female echolocation calls for their surveillance. Can J Zool 85:863–872CrossRefGoogle Scholar
  34. Holderied MW, von Helversen O (2003) Echolocation range and wingbeat period match in aerial-hawking bats. Proc R Soc Lond B 270:2293–2299CrossRefGoogle Scholar
  35. Houston RD, Boonman A, Jones G (2003) Do echolocation signals restrict bats’ choice of prey? In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphins. University of Chicago Press, Chicago, pp 339–345Google Scholar
  36. Huffman RF, Henson OW (1993a) Labile cochlear tuning in the mustached bat. I. Concomitant shifts in biosonar emission frequency. J Comp Physiol A 171:725–734PubMedCrossRefGoogle Scholar
  37. Huffman RF, Henson OW (1993b) Labile cochlear tuning in the mustached bat. II. Concomitant shifts in neural tuning. J Comp Physiol A 171:735–748PubMedCrossRefGoogle Scholar
  38. Jacobs DS, Barclay RMR, Walker MH (2007) The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern? Oecologia 152:583–594PubMedCrossRefGoogle Scholar
  39. Jameson JW, Hare JF (2009) Group-specific signatures in the echolocation calls of little brown bats (Myotis lucifugus) are not an artefact of clutter at the roost entrance. Acta Chiropterol 11:165–172CrossRefGoogle Scholar
  40. Janssen S, Schmidt S (2009) Evidence for a perception of prosodic cues in bat communication: contact call classification by Megaderma lyra. J Comp Physiol A 195:663–672CrossRefGoogle Scholar
  41. Jiang T, Liu R, Metzner W, You Y, Li S, Liu S, Feng J (2010) Geographical and individual variation in echolocation calls of the intermediate leaf-nosed bat. Hipposideros larvatus. Ethology 116:691–713Google Scholar
  42. Jones (1995) Variation in bat echolocation: implications for resource partitioning and communication. Le Rhinolophe 11:53–59Google Scholar
  43. Jones G (1999) Scaling of echolocation call parameters in bats. J Exp Biol 202:3359–3367PubMedGoogle Scholar
  44. Jones G, Barlow KE (2003) Cryptic species of echolocating bats. In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphins. University of Chicago Press, Chicago, pp 345–349Google Scholar
  45. Jones G, Kokurewicz T (1994) Sex and age variation in echolocation calls and flight morphology of Daubenton’s bats Myotis daubentonii. Mammalia 58:41–50CrossRefGoogle Scholar
  46. Jones G, Ransome RD (1993) Echolocation calls of bats are influenced by maternal effects and change over a lifetime. Proc R Soc Lond B Biol Sci 252:125–128CrossRefGoogle Scholar
  47. Jones G, Rayner JMV (1989) Foraging behavior and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R. hipposideros (Chiroptera, Rhinolophidae). Behav Ecol Sociobiol 25:183–191CrossRefGoogle Scholar
  48. Jones G, Teeling EC (2006) The evolution of echolocation in bats. Trends Ecol Evol 21:149–156PubMedCrossRefGoogle Scholar
  49. Jones G, Van Parijs SM (1993) Bimodal echolocation in pipistrelle bats: are cryptic species present? Proc R Soc Lond B Biol Sci 251:119–125CrossRefGoogle Scholar
  50. Jones G, Morton M, Hughes PM, Budden RM (1993) Echolocation, flight morphology and foraging strategies in some West African hipposiderid bats. J Zool Lond 230:385–400CrossRefGoogle Scholar
  51. Jones G, Sripathi K, Waters DA, Marimuthu G (1994) Individual variation in the echolocation calls of three sympatric Indian hipposiderid bats, and an experimental attempt to jam bat echolocation. Folia Zool 43:347–362Google Scholar
  52. Kanwal JS, Matsumura S, Ohlemiller K, Suga N (1994) Analysis of acoustic elements and syntax in communication sounds emitted by mustached bats. J Acoust Soc Am 96:1229–1254PubMedCrossRefGoogle Scholar
  53. Kazial KA, Masters WM (2004) Female big brown bats, Eptesicus fuscus, recognize sex from a caller’s echolocation signals. Anim Behav 67:855–863CrossRefGoogle Scholar
  54. Kazial KA, Burnett SC, Masters WM (2001) Individual and group variation in echolocation calls of big brown bats, Eptesicus fuscus (Chiroptera: Vespertilionidae). J Mammal 82:339–351CrossRefGoogle Scholar
  55. Kazial KA, Kenny TL, Burnett SC (2008a) Little brown bats (Myotis lucifugus) recognize individual identity of conspecifics using sonar calls. Ethology 114:469–478CrossRefGoogle Scholar
  56. Kazial KA, Pacheco S, Zielinski KN (2008b) Information content of sonar calls of little brown bats (Myotis lucifugus): potential for communication. J Mammal 89:25–33CrossRefGoogle Scholar
  57. Kingston T, Rossiter SJ (2004) Harmonic-hopping in Wallacea’s bats. Nature 429:654–657PubMedCrossRefGoogle Scholar
  58. Kingston T, Jones G, Zubaid A, Kunz TH (2000) Resource partitioning in rhinolophoid bats revisited. Oecologia 124:332–342CrossRefGoogle Scholar
  59. Kingston T, Lara MC, Jones G, Schneider CJ, Zubaid A, Kunz TH (2001) Acoustic divergence in two cryptic Hipposideros species: a role for social selection? Proc R Soc Lond B Biol Sci 268:1381–1386CrossRefGoogle Scholar
  60. Liu Y, Feng J, Jiang YL, Wu L, Sun KP (2007) Vocalization development of greater horseshoe bat, Rhinolophus ferrumequinum (Rhinolophidae, Chiroptera). Folia Zool 56:126–136Google Scholar
  61. Ma J, Kobayasi K, Zhang S, Metzner W (2006) Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum. J Comp Physiol A 192:535–550CrossRefGoogle Scholar
  62. Macías S, Mora E, García A (2006) Acoustic identification of mormoopid bats: a survey during the evening exodus. J Mammal 87:324–330CrossRefGoogle Scholar
  63. Masters WM, Jacobs SC, Simmons JA (1991) The structure of echolocation sounds used by the big brown bat Eptesicus fuscus: some consequences for echo processing. J Acoust Soc Am 89:1402–1413CrossRefGoogle Scholar
  64. Masters WM, Raver KAS, Kazial KA (1995) Sonar signals of big brown bats, Eptesicus fuscus, contain information about individual identity, age and family affiliation. Anim Behav 50:1243–1260CrossRefGoogle Scholar
  65. Maynard Smith J, Harper D (2004) Animal signals. Oxford University press, OxfordGoogle Scholar
  66. Möhres FP (1967) Communicative characters of sonar signals in bats. In: Busnel R-G (ed) Animal sonar systems: biology and bionics. NATO Advanced Study Institute, Frascati, pp 939–945Google Scholar
  67. Moss CF, Redish D, Gounden C, Kunz TH (1997) Ontogeny of vocal signals in the little brown-bat, Myotis lucifugus. Anim Behav 54:131–141PubMedCrossRefGoogle Scholar
  68. Neuweiler G (1989) Foraging ecology and audition in echolocating bats. Trends Ecol Evol 4:160–166PubMedCrossRefGoogle Scholar
  69. Neuweiler G (1990) Auditory adaptations for prey capture in echolocating bats. Physiol Rev 70:615–641PubMedGoogle Scholar
  70. Neuweiler G et al (1987) Foraging behavior and echolocation in the rufous horseshoe bat (Rhinolophus rouxi). Behav Ecol Sociobiol 20:53–67CrossRefGoogle Scholar
  71. Obrist MK (1995) Flexible bat echolocation: the influence of individual, habitat and conspecifics on sonar signal design. Behav Ecol Sociobiol 36:207–219CrossRefGoogle Scholar
  72. Parsons S, Jones G (2000) Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks. J Exp Biol 203:2641–2656PubMedGoogle Scholar
  73. Pearl DL, Fenton MB (1996) Can echolocation calls provide information about group identity in the little brown bat (Myotis lucifugus)? Can J Zool 74:2184–2192CrossRefGoogle Scholar
  74. Rossiter SJ et al (2007) Rangewide phylogeography in the greater horseshoe bat inferred from microsatellites: implications for population history, taxonomy and conservation. Mol Ecol 16:4699–4714PubMedCrossRefGoogle Scholar
  75. Ruczynski I, Kalko EKV, Siemers BM (2007) The sensory basis of roost finding in a forest bat, Nyctalus noctula. J Exp Biol 210:3607–3615PubMedCrossRefGoogle Scholar
  76. Ruczynski I, Kalko EKV, Siemers BM (2009) Calls in the forest: a comparative approach to how bats find tree cavities. Ethology 115:167–177Google Scholar
  77. Russo D, Jones G (2002) Identification of twenty-two bat species (Mammalia: Chiroptera) from Italy by analysis of time-expanded recordings of echolocation calls. J Zool Lond 258:91–103CrossRefGoogle Scholar
  78. Russo D, Jones G, Mucedda M (2001) Influence of age, sex and body condition on echolocation calls of Mediterranean and Mehely’s horseshoe bats Rhinolophus euryale and R. mehelyi (Chiroptera: Rhinolophidae). Mammalia 65:429–436CrossRefGoogle Scholar
  79. Russo D, Mucedda M, Bello M, Biscardi S, Pidinchedda E, Jones G (2007) Divergent echolocation call frequencies in insular rhinolophids (Chiroptera): a case of character displacement? J Biogeogr 34:2129–2138CrossRefGoogle Scholar
  80. Safi K, Siemers BM (2010). Implications of sensory ecology for species coexistence: biased perception links predator diversity to prey size distribution. Evol Ecol 24:703–713. doi: 10.1007/s10682-009-9326-0 Google Scholar
  81. Schmidt S, Hanke S, Pillat J (2000) The role of echolocation in the hunting of terrestrial prey—new evidence for an underestimated strategy in the gleaning bat, Megaderma lyra. J Comp Physiol A 186:975–988PubMedCrossRefGoogle Scholar
  82. Schnitzler H-U, Kalko EKV (2001) Echolocation by insect-eating bats. Bioscience 51:557–569CrossRefGoogle Scholar
  83. Schnitzler H-U, Moss CF, Denzinger A (2003) From spatial orientation to food acquisition in echolocating bats. Trends Ecol Evol 18:386–394CrossRefGoogle Scholar
  84. Schuchmann M, Siemers BM (2010) Behavioral evidence for community-wide species discrimination from echolocation calls in bats. Am Nat 176:72–82PubMedCrossRefGoogle Scholar
  85. Schuller G, Pollack G (1979) Disproportionate frequency representation in the inferior colliculus of Doppler-compensating greater horseshoe bats: evidence of an acoustic fovea. J Comp Physiol A 132:47–54CrossRefGoogle Scholar
  86. Shaw KL (2000) Further acoustic diversity in Hawaiian forests: two new species of Hawaiian cricket (Orthoptera: Gryllidae: Laupala). Zool J Linn Soc 129:73–91CrossRefGoogle Scholar
  87. Shi LM, Feng J, Liu Y, Ye GX, Zhu X (2009) Is food resource partitioning responsible for deviation of echolocation call frequencies from allometry in Rhinolophus macrotis? Acta Theriol 54:371–382CrossRefGoogle Scholar
  88. Siemers BM (2006) Bats: communication by ultrasound. In: Brown K (ed) The encyclopedia of language and linguistics, 2nd edn. Elsevier, Amsterdam, pp 699–704Google Scholar
  89. Siemers BM, Kerth G (2006) Do echolocation calls of the colony-living Bechstein’s bats (Myotis bechsteinii) provide individual-specific signatures? Behav Ecol Sociobiol 59:443–454CrossRefGoogle Scholar
  90. Siemers BM, Beedholm K, Dietz C, Dietz I, Ivanova T (2005) Is species identity, sex, age or individual quality conveyed by echolocation call frequency in European horseshoe bats? Acta Chiropterol 7:259–274CrossRefGoogle Scholar
  91. Suga N, Niwa H, Taniguchi I, Margoliash D (1987) The personalized auditory cortex of the mustached bat: adaptation for echolocation. J Neurophys 58:643–654Google Scholar
  92. Surlykke A, Kalko EKV (2008) Echolocating bats cry out loud to detect their prey. PLoS One 3:2036CrossRefGoogle Scholar
  93. Surlykke A, Futtrup V, Tougaard J (2003) Prey-capture success revealed by echolocation signals in pipistrelle bats (Pipistrellus pygmaeus). J Exp Biol 206:93–104PubMedCrossRefGoogle Scholar
  94. Temeles EJ (1994) The role of neighbours in territorial systems: when are they ‘dear enemies’? Anim Behav 47:339–350CrossRefGoogle Scholar
  95. Thabah A, Rossiter SJ, Kingston T, Zhang S, Parsons S, Mya My K, Zubaid A, Jones G (2006) Genetic divergence and echolocation call frequency in cryptic species of Hipposideros larvatus sensu lato (Chiroptera: Hipposideridae) from the Indo-Malayan region. Biol J Linn Soc 88:119–130CrossRefGoogle Scholar
  96. Ulanovsky N, Fenton MB, Tsoar A, Korine C (2004) Dynamics of jamming avoidance in echolocating bats. Proc R Soc Lond B Biol Sci 271:1467–1475CrossRefGoogle Scholar
  97. Vater M, Kossl M, Foeller E, Coro F, Mora E, Russell IJ (2003) Development of echolocation calls in the mustached bat, Pteronotus parnellii. J Neurophysiol 90:2274–2290PubMedCrossRefGoogle Scholar
  98. Voigt-Heucke SL, Taborsky M, Dechmann DKN (2010) A dual function of echolocation: bats use echolocation calls to identify familiar and unfamiliar individuals. Anim Behav. doi: 10.1016/j.anbehav.2010.03.025
  99. Wilkinson GS (1984) Reciprocal food sharing in the vampire bat. Nature 308:181–184CrossRefGoogle Scholar
  100. Wilkinson GS (1992) Information transfer at evening bat colonies. Anim Behav 44:501–518CrossRefGoogle Scholar
  101. Yoshino H, Matsamura S, Kinjo K, Tamura H, Ota H, Izawa M (2006) Geographical variation in echolocation call and body size of the Okinawan least horseshoe bat, Rhinolophus pumilus (Mammalia: Rhinolophidae), on Okinawa-jima Island, Ryukyu Archipelago, Japan. Zool Sci 23:661–667PubMedCrossRefGoogle Scholar
  102. Yoshino H, Armstrong KN, Izawa M, Yokoyama J, Kawata M (2008) Genetic and acoustic population structuring in the Okinawa least horseshoe bat: are intercolony acoustic differences maintained by vertical maternal transmission? Mol Ecol 17:4978–4991PubMedCrossRefGoogle Scholar
  103. Yovel Y, Melcon ML, Franz MO, Denzinger A, Schnitzler H-U (2009) The voice of bats: how greater mouse-eared bats recognize individuals based on their echolocation calls. PLoS Comput Biol 5:e1000400PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.School of Biological SciencesUniversity of BristolBristolUK
  2. 2.Sensory Ecology GroupMax Planck Institute for OrnithologySeewiesenGermany

Personalised recommendations