Journal of Comparative Physiology A

, Volume 196, Issue 10, pp 713–727 | Cite as

Pheromonal communication in amphibians

  • Sarah K. WoodleyEmail author


Pheromonal communication is widespread in salamanders and newts and may also be important in some frogs and toads. Several amphibian pheromones have been behaviorally, biochemically and molecularly identified. These pheromones are typically peptides or proteins. Study of pheromone evolution in plethodontid salamanders has revealed that courtship pheromones have been subject to continual evolutionary change, perhaps as a result of co-evolution between the pheromonal ligand and its receptor. Pheromones are detected by the vomeronasal organ and main olfactory epithelium. Chemosensory neurons express vomeronasal receptors or olfactory receptors. Frogs have relatively large numbers of vomeronasal receptors that are transcribed in both the vomeronasal organ and the main olfactory epithelium. Salamander vomeronasal receptors apparently are restricted to the vomeronasal organ. To date, no chemosensory ligands have been matched to vomeronasal receptors or olfactory receptors so it is unknown whether particular receptor types are (1) specialized for detection of pheromones versus other chemosignals, or (2) specialized for detection of volatile, nonvolatile, or water-borne chemosignals. Despite progress in understanding amphibian pheromonal communication, only a small fraction of amphibian species have been examined. Study of additional species of amphibians will indicate which traits related to pheromonal communication are evolutionarily conserved and which traits have diverged over time.


Amphibian Pheromone Vomeronasal receptor Olfactory Courtship 



Vomeronasal organ


Main olfactory epithelium


Vomeronasal receptor


Olfactory receptor


Plethodontid receptivity factor


Plethodontid modulating factor


Sodefrin precursor-like factor


Trace amine-associated receptor



I thank Drs Michael J. Baum, Lynne D. Houck, Karen Kiemnec-Tyburczy, and two anonymous reviewers for comments on earlier drafts. I thank Duquesne University Bayer School of Natural and Environmental Sciences for support.


  1. Arnold SJ (1972) The evolution of courtship behaviors in salamanders. Dissertation, University of MichiganGoogle Scholar
  2. Baxi KN, Dorries KM, Eisthen HL (2006) Is the vomeronasal system really specialized for detecting pheromones? Trends Neurosci 29:1–7CrossRefPubMedGoogle Scholar
  3. Belanger RM, Corkum LD (2009) Review of aquatic sex pheromones and chemical communication in anurans. J Herpetol 43:184–191CrossRefGoogle Scholar
  4. Byrne PG, Keough JS (2007) Terrestrial toadlets use chemosignals to recognize conspecifics, locate mates and strategically adjust calling behaviour. Anim Behav 74:1155–1162CrossRefGoogle Scholar
  5. Chippindale PT, Bonett RM, Baldwin AS, Wiens JJ (2004) Phylogenetic evidence for a major reversal of life-history evolution in plethodontid salamanders. Evolution 58:2809–2822PubMedGoogle Scholar
  6. Coss HT (1974) Maxillary and premaxillary dentition of salamanders of the tribe Plethodontini (family Plethodontidae). Dissertation, Clemson UniversityGoogle Scholar
  7. Date-Ito A, Ohara H, Ichikawa M, Mori Y, Hagino-Yamagishi K (2008) Xenopus V1R vomeronasal receptor family is expressed in the main olfactory system. Chem Senses 33:339–346CrossRefPubMedGoogle Scholar
  8. Dawley EM (1984) Identification of sex through odors by male red-spotted newts, Notophthalamus viridescens. Herpetologica 40:101–105Google Scholar
  9. Dawley EM (1992) Sexual dimorphism in a chemosensory system: the role of the vomeronasal organ in salamander reproductive behavior. Copeia 1992:113–120CrossRefGoogle Scholar
  10. Dawley EM (1998) Species, sex, and seasonal differences in VNO size. Microsc Res Tech 41:506–518CrossRefPubMedGoogle Scholar
  11. Dawley EM, Bass AH (1988) Organization of the vomeronasal organ in a plethodontid salamander. J Morphol 198:243–255CrossRefGoogle Scholar
  12. Dawley EM, Bass AH (1989) Chemical access to the vomeronasal organ of a plethodontid salamander. J Morphol 200:163–174CrossRefGoogle Scholar
  13. Dawley EM, Crowder J (1995) Sexual and seasonal differences in the vomeronasal epithelium of the red-backed salamander (Plethodon cinereus). J Comp Neurol 359:382–390CrossRefPubMedGoogle Scholar
  14. Dawley EM, Fingerlin A, Hwang D, John SS, Stankiewicz CA (2000) Seasonal cell proliferation in the chemosensory epithelium and brain of red-backed salamanders, Plethodon cinereus. Brain Behav Evol 56:1–13CrossRefPubMedGoogle Scholar
  15. Dawley EM, Nelsen M, Lopata A, Schwartz J, Bierly A (2006) Cell birth and survival following seasonal periods of cell proliferation in the chemosensory epithelia of red-backed salamanders, Plethodon cinereus. Brain Behav Evol 68:26–36CrossRefPubMedGoogle Scholar
  16. Doving KB, Trotier D, Rosin J, Holley A (1993) Functional architecture of the vomeronasal organ of the frog (genus Rana). Acta Zool 74:173–180CrossRefGoogle Scholar
  17. Duellman WE, Trueb L (1986) Biology of amphibians. McGraw–Hill, New YorkGoogle Scholar
  18. Eisthen HL (1997) Evolution of vertebrate olfactory systems. Brain Behav Evol 50:222–233CrossRefPubMedGoogle Scholar
  19. Eisthen HL (2000) Presence of the vomeronasal system in aquatic salamanders. Philos Trans R Soc Lond B Biol Sci 355:1209–1213CrossRefPubMedGoogle Scholar
  20. Eisthen HL (2004) The goldfish knows: olfactory receptor cell morphology predicts receptor gene expression. J Comp Neurol 477:341–346CrossRefPubMedGoogle Scholar
  21. Eisthen HL, Sengelaub DR, Schroeder DM, Alberts JR (1994) Anatomy and forebrain projections of the olfactory and vomeronasal organs in axolotls (Ambystoma mexicanum). Brain Behav Evol 44:108–124CrossRefPubMedGoogle Scholar
  22. Eom J, Jung YR, Park D (2009) F-series prostaglandin function as sex pheromones in the Korean salamander, Hynobius leechii. Comp Biochem Physiol A Mol Integr Physiol 154:61–69CrossRefPubMedGoogle Scholar
  23. Feldhoff R, Rollmann SM, Houck LD (1999) Chemical analysis of courtship pheromones in a plethodontid salamander. In: Johnston RE, Muller-Schwartz D, Sorenson P (eds) Advances in chemical signals in vertebrates. Kluwer Academic/Plenum, New York, pp 117–126Google Scholar
  24. Fontana MF, Houck LD, Staub NL (2007) In situ localization of plethodontid courtship pheromone mRNA in formalin-fixed tissue. Gen Comp Endocrinol 150:480–485CrossRefPubMedGoogle Scholar
  25. Fraker ME, Hu F, Cuddapah V, McCollum SA, Relyea RA, Hempel J, Denver RJ (2009) Characterization of an alarm pheromone secreted by amphibian tadpoles that induces behavioral inhibition and suppression of the neuroendocrine stress axis. Horm BehavGoogle Scholar
  26. Freitag J, Krieger J, Strotmann J, Breer H (1995) Two classes of olfactory receptors in Xenopus laevis. Neuron 15:1383–1392CrossRefPubMedGoogle Scholar
  27. Freitag J, Ludwig G, Andreini I, Rossler P, Breer H (1998) Olfactory receptors in aquatic and terrestrial vertebrates. J Comp Physiol A 183:635–650CrossRefPubMedGoogle Scholar
  28. Gliem S, Schild D, Manzini I (2009) Highly specific responses to amine odorants of individual olfactory receptor neurons in situ. Eur J Neurosci 29:2315–2326CrossRefPubMedGoogle Scholar
  29. Grus WE, Zhang J (2006) Origin and evolution of the vertebrate vomeronasal system viewed through system-specific genes. Bioessays 28:709–718CrossRefPubMedGoogle Scholar
  30. Hagino-Yamagishi K, Moriya K, Kubo H, Wakabayashi Y, Isobe N, Saito S, Ichikawa M, Yazaki K (2004) Expression of vomeronasal receptor genes in Xenopus laevis. J Comp Neurol 472:246–256CrossRefPubMedGoogle Scholar
  31. Hashiguchi Y, Nishida M (2007) Evolution of trace amine associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium. Mol Biol Evol 24:2099–2107CrossRefPubMedGoogle Scholar
  32. Hecker L, Madison DM, Dapson RW, Holzherr V (2003) Presence of modified serous glands in the caudal integument of the red-backed salamander (Plethodon cinereus). J Herpetol 37:732–736CrossRefGoogle Scholar
  33. Houck LD (2009) Pheromone communication in amphibians and reptiles. Annu Rev Physiol 71:161–176CrossRefPubMedGoogle Scholar
  34. Houck LD, Arnold SJ (2003) Courtship and mating. In: Sever DM (ed) Phylogeny and reproductive biology of Urodela (Amphibia). Science Publishers, Enfield, New Hampshire, pp 383–424Google Scholar
  35. Houck LD, Reagan NL (1990) Male courtship pheromones increase female receptivity in a plethodontid salamander. Anim Behav 39:729–734CrossRefGoogle Scholar
  36. Houck LD, Sever DM (1994) Role of the skin in reproduction and behaviour. In: Heatwole H, Barthalmus GT (eds) Amphibian biology. Surry Beatty and Sons, Chipping Norton, NSW, Australia, pp 351–381Google Scholar
  37. Houck LD, Arnold SJ, Thisted RA (1985) A statistical study of mate choice: sexual selection in a plethodontid salamander (Desmognathus ochrophaeus). Evolution 39:370–386CrossRefGoogle Scholar
  38. Houck LD, Bell AM, Reagan-Wallin NL, Feldhoff RC (1998) Effects of experimental delivery of male courtship pheromones on the timing of courtship in a terrestrial salamander, Plethodon jordani (Caudata:Plethodontidae). Copeia 1998:214–219CrossRefGoogle Scholar
  39. Houck LD, Palmer CA, Watts RA, Arnold SJ, Feldhoff RC, Feldhoff PW (2007) A new vertebrate courtship pheromone, PMF affects female receptivity in a terrestrial salamander. Anim Behav 73:315–320CrossRefGoogle Scholar
  40. Houck LD, Watts RA, Arnold SJ, Bowen KE, Kiemnec KM, Godwin HA, Feldhoff PW, Feldhoff RC (2008a) A recombinant courtship pheromone affects sexual receptivity in a plethodontid salamander. Chem Senses 33:623–631CrossRefPubMedGoogle Scholar
  41. Houck LD, Watts RA, Mead LM, Palmer CA, Arnold AP, Feldhoff PW, Feldhoff RC (2008b) A candidate vertebrate pheromone, SPF, increases female receptivity in a salamander. In: Hurst JL (ed) chemical signals in vertebrates. Springer, New York, pp 213–221CrossRefGoogle Scholar
  42. Iida A, Kashiwayanagi M (1999) Responses of Xenopus laevis water nose to water-soluble and volatile odorants. J Gen Physiol 114:85–92CrossRefPubMedGoogle Scholar
  43. Iwata T, Umezawa K, Toyoda F, Takahashi N, Matsukawa H, Yamamoto K, Miura S, Hayashi H, Kikuyama S (1999) Molecular cloning of newt sex pheromone precursor cDNAs: evidence for the existence of species-specific forms of pheromones. FEBS Lett 457:400–404CrossRefPubMedGoogle Scholar
  44. Iwata T, Conlon JM, Nakada T, Toyoda F, Yamamoto K, Kikuyama S (2004) Processing of multiple forms of preprosodefrin in the abdominal gland of the red-bellied newt Cynops pyrrhogaster: regional and individual differences in preprosodefrin gene expression. Peptides 25:1537–1543CrossRefPubMedGoogle Scholar
  45. Jacob S, McClintock MK (2000) Psychological state and mood effects of steroidal chemosignals in women and men. Horm Behav 37:57–78CrossRefPubMedGoogle Scholar
  46. Jermakowicz WJ 3rd, Dorsey DA, Brown AL, Wojciechowski K, Giscombe CL, Graves BM, Summers CH, Ten Eyck GR (2004) Development of the nasal chemosensory organs in two terrestrial anurans: the directly developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), and the metamorphosing toad, Bufo americanus (Anura: Bufonidae). J Morphol 261:225–248CrossRefPubMedGoogle Scholar
  47. Ji Y, Zhang Z, Hu Y (2009) The repertoire of G-protein-coupled receptors in Xenopus tropicalis. BMC Genomics 10:263CrossRefPubMedGoogle Scholar
  48. Kauer JS (2002) On the scents of smell in the salamander. Nature 417:336–342CrossRefPubMedGoogle Scholar
  49. Kiemnec-Tyburczy KM, Watts RA, Gregg RG, Borstal V, Arnold SJ (2009) Evolutionary shifts in courtship pheromone composition revealed by EST analysis of plethodontid salamander mental glands. Gene 432:75–81CrossRefPubMedGoogle Scholar
  50. Kikuyama S, Toyoda F, Ohmiya Y, Matsuda K, Tanaka S, Hayashi H (1995) Sodefrin: a female-attracting peptide pheromone in newt cloacal glands. Science 267:1643–1645CrossRefPubMedGoogle Scholar
  51. King JD, Rollins-Smith LA, Nielsen PF, John A, Conlon JM (2005) Characterization of a peptide from skin secretions of male specimens of the frog, Leptodactylus fallax that stimulates aggression in male frogs. Peptides 26:597–601CrossRefPubMedGoogle Scholar
  52. Laberge F, Feldhoff RC, Feldhoff PW, Houck LD (2008) Courtship pheromone-induced c-Fos-like immunolabeling in the female salamander brain. Neuroscience 151:329–339CrossRefPubMedGoogle Scholar
  53. Largen W, Woodley SK (2008) Cutaneous tail glands, noxious skin secretions, and scent marking in a terrestrial salamander (Plethodon shermani). Herpetologica 64:270–280CrossRefGoogle Scholar
  54. Larson A, Weisrock DW, Kozak KH (2003) Phylogenetic systematics of salamanders (Amphibia:Urodela): a review. In: Sever DM (ed) Phylogeny and reproductive behavior of Urodela (Amphibia). Science Publishers, Enfield, New Hampshire, pp 31–108Google Scholar
  55. Malacarne G, Vellano C (1987) Behavioral evidence of a courtship pheromone in the crested newt, Triturus cristatus carnifex Laurenti. Copeia 1987:245–247CrossRefGoogle Scholar
  56. Marchand JE, Yang X, Chikaraishi D, Krieger J, Breer H, Kauer JS (2004) Olfactory receptor gene expression in tiger salamander olfactory epithelium. J Comp Neurol 474:453–467CrossRefPubMedGoogle Scholar
  57. Mathis A, Jaeger RG, Keen WH, Ducy PK, Walls SC, Buchanan BW (1995) Aggression and territoriality by salamanders and a comparison with the territorial behaviour of frogs. In: Heatwole H, Sullivan BK (eds) Amphibian biology. Surrey Beatty and Sons, Chipping Norton, NSW, Australia, pp 633–676Google Scholar
  58. Mezler M, Fleischer J, Conzelmann S, Korchi A, Widmayer P, Breer H, Boekhoff I (2001) Identification of a nonmammalian Golf subtype: functional role in olfactory signaling of airborne odorants in Xenopus laevis. J Comp Neurol 439:400–410CrossRefPubMedGoogle Scholar
  59. Mueller RL, Macey JR, Jaekel M, Wake DB, Boore JL (2004) Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. PNAS 101:13820–13825CrossRefPubMedGoogle Scholar
  60. Nakada T, Toyoda F, Iwata T, Yamamoto K, Conlon JM, Kato T, Kikuyama S (2007) Isolation, characterization and bioactivity of a region-specific pheromone, [Val8]sodefrin from the newt Cynops pyrrhogaster. Peptides 28:774–780CrossRefPubMedGoogle Scholar
  61. Noble GK, Pope SH (1929) The modification of the cloaca and teeth of the adult salamander, Desmognathus, by testicular transplants and by castration. J Exp Biol 6:399–411Google Scholar
  62. Palmer CA, Houck LD (2005) Responses to sex- and species-specific chemical signals in allopatric and sympatric salamander species. In: Mason RT, LeMaster MP, Muller-Schwartz D (eds) Chemical signals in vertebrates, 10. Kluwer Academic/Plenum, New York, pp 32–41CrossRefGoogle Scholar
  63. Palmer CA, Watts RA, Gregg RG, McCall MA, Houck LD, Highton R, Arnold SJ (2005) Lineage-specific differences in evolutionary mode in a salamander courtship pheromone. Mol Biol Evol 22:2243–2256CrossRefPubMedGoogle Scholar
  64. Palmer CA, Hollis DM, Watts RA, Houck LD, McCall MA, Gregg RG, Feldhoff PW, Feldhoff RC, Arnold SJ (2007a) Plethodontid modulating factor, a hypervariable salamander courtship pheromone in the three-finger protein superfamily. FEBS J 274:2300–2310CrossRefPubMedGoogle Scholar
  65. Palmer CA, Watts RA, Houck LD, Picard AL, Arnold SJ (2007b) Evolutionary replacement of components in a salamander pheromone signaling complex: more evidence for phenotypic-molecular decoupling. Evolution 61:202–215CrossRefPubMedGoogle Scholar
  66. Park D, Propper CR (2001) Repellent function of male pheromones in the red-spotted newt. J Exp Zool 289:404–408CrossRefPubMedGoogle Scholar
  67. Park D, McGuire JM, Majchrzak AL, Ziobro JM, Eisthen HL (2004) Discrimination of conspecific sex and reproductive condition using chemical cues in axolotls (Ambystoma mexicanum). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190:415–427CrossRefPubMedGoogle Scholar
  68. Perriman AW, Apponyi MA, Buntine MA, Jackway RJ, Rutland MW, White JW, Bowie JH (2008) Surface movement in water of splendipherin, the aquatic male sex pheromone of the tree frog Litoria splendida. FEBS J 275:3362–3374CrossRefPubMedGoogle Scholar
  69. Picard AL (2005) Courtship in the zig-zag salamander (Plethodon dorsalis): insights into a transition in pheromone-delivery behavior. Ethology 111:799–809CrossRefGoogle Scholar
  70. Placyk JS Jr, Graves BM (2002) Prey detection by vomeronasal chemoreception in a plethodontid salamander. J Chem Ecol 28:1017–1036CrossRefPubMedGoogle Scholar
  71. Rohr J, Park D, Sullivan AM, McKenna M, Propper CR, Madison DM (2004) Operational sex ratio in newts: field responses and characterization of a constituent chemical cue. Behav Ecol 16:286–292CrossRefGoogle Scholar
  72. Rollmann SM, Houck LD, Feldhoff RC (1999) Proteinaceous pheromone affecting female receptivity in a terrestrial salamander. Science 285:1907–1909CrossRefPubMedGoogle Scholar
  73. Rollmann SM, Houck LD, Feldhoff RC (2000) Population variation in salamander courtship pheromones. J Chem Ecol 26:2713–2724CrossRefGoogle Scholar
  74. Rollmann SM, Houck LD, Feldhoff RC (2003) Conspecific and heterospecific pheromone effects on female receptivity. Anim Behav 66:857–861CrossRefGoogle Scholar
  75. Saito S, Taniguchi K (2000) Expression patterns of glycoconjugates in the three distinctive olfactory pathways of the clawed frog, Xenopus laevis. J Vet Med Sci 62:153–159CrossRefPubMedGoogle Scholar
  76. San Mauro D, Vences M, Alcobendas M, Zardoya R, Meyer A (2005) Initial diversification of living amphibians predated the breakup of Pangaea. Am Nat 165:590–599CrossRefPubMedGoogle Scholar
  77. Schmidt A, Roth G (1990) Central olfactory and vomeronasal pathways in salamanders. J Hirnforsch 31:543–553PubMedGoogle Scholar
  78. Schubert SN, Houck LD, Feldhoff PW, Feldhoff RC, Woodley SK (2006) Effects of androgens on behavioral and vomeronasal responses to chemosensory cues in male terrestrial salamanders (Plethodon shermani). Horm Behav 50:469–476CrossRefPubMedGoogle Scholar
  79. Schubert SN, Houck LD, Feldhoff PW, Feldhoff RC, Woodley SK (2008) The effects of sex on chemosensory communication in a terrestrial salamander (Plethodon shermani). Horm Behav 54:270–277CrossRefPubMedGoogle Scholar
  80. Schubert SN, Wack CL, Houck LD, Feldhoff PW, Feldhoff RC, Woodley SK (2009) Exposure to pheromones increases plasma corticosterone concentrations in a terrestrial salamander. Gen Comp Endocrinol 161:271–275CrossRefPubMedGoogle Scholar
  81. Shi P, Zhang J (2007) Comparative genomic analysis identifies an evolutionary shift of vomeronasal receptor gene repertoires in the vertebrate transition from water to land. Genome Res 17:166–174CrossRefPubMedGoogle Scholar
  82. Simons RR, Felgenhauer BE, Thompson T (1999) Description of the postcloacal glands of Plethodon cinereus, the red-backed salamander, during bouts of scent marking. J Morphol 242:257–269CrossRefPubMedGoogle Scholar
  83. Sorenson P, Stacey N (2006) Reproductive pheromones. In: Sloman K, Wilson R, Balshine S (eds) Behaviour and physiology of fish. Elsevier, San Diego, pp 359–412Google Scholar
  84. Taniguchi K, Saito S, Oikawa T (2008) Phylogenic aspects of the amphibian dual olfactory system. J Vet Med Sci 70:1–9CrossRefPubMedGoogle Scholar
  85. Thompson RR, Tokar Z, Pistohl D, Moore FL (1999) Behavioral evidence for a sex pheromone in female roughskin newts, Taricha granulosa. In: Johnston RE, Muller-Schwartz D, Sorenson P (eds) Advances in chemical signals in vertebrates. Plenum Press, New York, pp 421–430Google Scholar
  86. Thompson RR, Dickinson PS, Rose JD, Dakin KA, Civiello GM, Segerdahl A, Bartlett R (2008) Pheromones enhance somatosensory processing in newt brains through a vasotocin-dependent mechanism. Proc Biol Sci 275:1685–1693CrossRefPubMedGoogle Scholar
  87. Tirindelli R, Dibattista M, Pifferi S, Menini A (2009) From pheromones to behavior. Physiol Rev 89:921–956CrossRefPubMedGoogle Scholar
  88. Toyoda F, Kikuyama S (2000) Hormonal influence on the olfactory response to a female-attracting pheromone, sodefrin, in the newt, Cynops pyrrhogaster. Comp Biochem Phys B 126:239–245CrossRefGoogle Scholar
  89. Toyoda F, Tanaka S, Matsuda K, Kikuyama S (1994) Hormonal control of response to and secretion of sex attractants in Japanese newts. Physiol Behav 55:569–576CrossRefPubMedGoogle Scholar
  90. Toyoda F, Hayakawa Y, Ichikawa M, Kikuyama S (1999) Olfactory responses to a female-attracting pheromone in the newt, Cynops pyrrhogaster. In: Johnston RE, Muller-Schwartz D, Sorenson P (eds) Advances in chemical signals in vertebrates. Kluwer Academic/Plenum, New York, pp 607–616Google Scholar
  91. Toyoda F, Yamamoto K, Iwata T, Hasunuma I, Cardinali M, Mosconi G, Polzonetti-Magni AM, Kikuyama S (2004) Peptide pheromones in newts. Peptides 25:1531–1536CrossRefPubMedGoogle Scholar
  92. Twitty VC (1955) Field experiments on the biology and genetic relationships of the Californian species of Triturus. J Exp Zool 129:129–147CrossRefGoogle Scholar
  93. Wabnitz PA, Bowie JH, Tyler MJ, Wallace JC, Smith BP (1999) Aquatic sex pheromone from a male tree frog. Nature 401:444–445CrossRefPubMedGoogle Scholar
  94. Wabnitz PA, Bowie JH, Tyler MJ, Wallace JC, Smith BP (2000) Differences in the skin peptides of the male and female Australian tree frog Litoria splendida. Eur J Biochem 267:269–275CrossRefPubMedGoogle Scholar
  95. Waldman B, Bishop PJ (2004) Chemical communication in an archaic anuran amphibian. Behav Ecol 15:88–93CrossRefGoogle Scholar
  96. Watts RA, Palmer CA, Feldhoff RC, Feldhoff PW, Houck LD, Jones AG, Pfrender ME, Rollmann SM, Arnold SJ (2004) Stabilizing selection on behavior and morphology masks positive selection on the signal in a salamander pheromone signaling complex. Mol Biol Evol 21:1032–1041CrossRefPubMedGoogle Scholar
  97. Wells KD (2007) Ecology and behavior of amphibians. The University of Chicago Press, ChicagoGoogle Scholar
  98. Wirsig-Wiechmann CR, Houck LD, Feldhoff PW, Feldhoff RC (2002) Pheromonal activation of vomeronasal neurons in plethodontid salamanders. Brain Res 952:335–344CrossRefPubMedGoogle Scholar
  99. Wirsig-Wiechmann CR, Houck LD, Wood JM, Feldhoff PW, Feldhoff RC (2006) Male pheromone protein components activate female vomeronasal neurons in the salamander Plethodon shermani. BMC Neurosci 7:26CrossRefPubMedGoogle Scholar
  100. Woodley SK (2007) Sex steroid hormones and sexual dimorphism of chemosensory structures in a terrestrial salamander (Plethodon shermani). Brain Res 1138:95–103CrossRefPubMedGoogle Scholar
  101. Wyatt TD (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  102. Yamamoto K, Kawai Y, Hayashi T, Ohe Y, Hayashi H, Toyoda F, Kawahara G, Iwata T, Kikuyama S (2000) Silefrin, a sodefrin-like pheromone in the abdominal gland of the sword-tailed newt, Cynops ensicauda. FEBS Lett 472:267–270CrossRefPubMedGoogle Scholar
  103. Zhou Q, Hinkle G, Sogin ML, Dionne VE (1997) Phylogenetic analysis of olfactory receptor genes from mudpuppy (Necturus maculosus). Biol Bull 193:248–250PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Biological SciencesDuquesne UniversityPittsburghUSA

Personalised recommendations