Journal of Comparative Physiology A

, Volume 195, Issue 6, pp 557–569 | Cite as

Structure and optics of the eyes of the box jellyfish Chiropsella bronzie

  • Megan O’Connor
  • Anders Garm
  • Dan-E. Nilsson
Original Paper


Cubomedusae have a total of 24 eyes of four morphologically different types. Two of these eye types are camera-type eyes (upper and lower lens-eye), while the other two eye types are simpler pigment pit eyes (pit and slit eye). Here, we give a description of the visual system of the box jellyfish species Chiropsella bronzie and the optics of the lens eyes in this species. One aim of this study is to distinguish between general cubozoan features and species-specific features in the layout and optics of the eyes. We find that both types of lens eyes are more severely under-focused in C. bronzie than those in the previously investigated species Tripedalia cystophora. In the lower lens-eye of C. bronzie, blur circles subtend 20 and 52° for closed and open pupil, respectively, effectively removing all but the coarsest structures of the image. Histology reveals that the retina of the lower lens-eye, in addition to pigmented photoreceptors, also contains long pigment-cells, with both dark and white pigment, where the dark pigment migrates on light/dark adaptation. Unlike the upper lens-eye lens of T.cystophora, the same eye in C.bronzie did not display any significant optical power.


Box jellyfish Visual systems Photoreceptors Eyes Visual optics 



The authors would like to thank Jamie Seymour, Matthew Gordon and Teresa Carrette at James Cook University, Cairns for their help and support in the field and for fruitful discussions. A. G. would like to acknowledge grant # 2005-1-74 from the Carlsberg Foundation and D.-E.N. would like acknowledge grants from the Swedish Research Council and the Swedish Foundation for Strategic Research (BioX). All of the experiments conducted in this study comply with the ‘Principles of animal care’, publication no. 86-23, revised 1985 of the National Institute of Health and with the current laws for animal care in Australia and Sweden.


  1. Berger EW (1898) The histological structure of the eyes of cubomedusae. J Comp Neurol 8:223–230CrossRefGoogle Scholar
  2. Berger EW (1900) Physiology and histology of the cubomedusae including Dr. F. S. Conant’s notes on the physiology. Mem Biol Lab Johns Hopkins Univ IV(4):1–84Google Scholar
  3. Buskey EJ (2003) Behavioral adaptations of the cubozoan medusa Tripedalia cystophora for feeding on copepod (Dioithona oculata) swarms. Mar Biol 142:225–232Google Scholar
  4. Claus C (1878) Ueber Charybdea marsupialis. Arb aus der Zool Inst der Univ Wien II:16–55Google Scholar
  5. Coates M (2003) Visual ecology and functional morphology of cubozoa (Cnidaria). Intergr Comp Biol 43:542–548CrossRefGoogle Scholar
  6. Coates MM, Garm A, Theobald JC, Thompson SH, Nilsson D-E (2006) The spectral sensitivity of the lens eyes of a box jellyfish, Tripedalia cystophora (Conant). J Exp Biol 209:3758–3765PubMedCrossRefGoogle Scholar
  7. Conant FS (1898) The cubomedusae. Mem Biol Lab Johns Hopkins Univ IV(1):1–61Google Scholar
  8. Eakin RM, Westfall JA (1962) Fine structure of photoreceptors in hydromedusan, Polyorchis penicillatus. Proc Natl Acad Sci USA 48:826–833PubMedCrossRefGoogle Scholar
  9. Garm A, O’Connor M, Parkefelt L, Nilsson D-E (2007) Visually guided obstacle avoidance in the box jellyfish Tripedalia cystophora and Chiropsella bronzie. J Exp Biol 210:3616–3623PubMedCrossRefGoogle Scholar
  10. Garm A, Andersson F, Nilsson D-E (2008) Unique structure and optics of the lesser eyes of the box jellyfish Tripedalia cystophora. Vision Res 48:1061–1073PubMedCrossRefGoogle Scholar
  11. Gordon M, Hatcher C, Seymour J (2004) Growth and age determination of the tropical Australian cubozoan Chiropsalmus sp. Hydrobiologia 530(531):339–345CrossRefGoogle Scholar
  12. Koyanagi M, Takano K, Tsukamoto H, Ohtsu K, Tokunaga F, Terakita A (2008) Jellyfish vision starts with cAMP signaling mediated by opsin-Gs cascade. Proc Natl Acad Sci 105(40):15576–15580PubMedCrossRefGoogle Scholar
  13. Kozmik Z, Ruzickova J, Jonasova K, Matsumoto Y, Vopalensky P, Kozmikova I, Strnad H, Kawamura S, Piatigorsky J, Paces V, Vlcek C (2008) Assembly of the cnidarian camera-type eye from vertebrate-like components. Proc Natl Acad Sci USA 105:8989–8993PubMedCrossRefGoogle Scholar
  14. Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, New YorkGoogle Scholar
  15. Land MF, Nilsson D-E (2006) General purpose and special purpose visual systems. In: Warrant EJ, Nilsson D-E (eds) Invertebrate vision. Cambridge University Press, Cambridge, pp 167–210Google Scholar
  16. Laska G, Hündgen M (1982) Morphologie und ultrastruktur der lichtsinnesorgane von Tripedalia cystophora Conant (Cnidaria, Cubozoa). Zool Jb Anat 108:107–123Google Scholar
  17. Martin VJ (2002) Photoreceptors of cnidarians. Can J Zool 80:1703–1722CrossRefGoogle Scholar
  18. Martin VJ (2004) Photoreceptors of cubozoan jellyfish. Hydrobiologia 530(531):135–144CrossRefGoogle Scholar
  19. Morandini A (2003) Deep-sea medusae (Cnidiaria: Cubozoa, Hydrozoa and Scyphozoa) from the coast of Bahia (western South Atlantic, Brazil). Mitt Hamb Zool Mus Inst 100:13–25Google Scholar
  20. Nilsson D-E, Gilsén L, Coates M, Skogh C, Garm A (2005) Advanced optics in a jellyfish eye. Nature 435:201–205PubMedCrossRefGoogle Scholar
  21. Plachetzki DC, Degnan BM, Oakley TH (2007) The origins of novel protein interactions during animal opsin evolution. PLoS ONE. doi: 10.1371/journal.pone.0001054
  22. Schewiakoff W (1889) Beiträge zur kenntnis des acalephenauges. Morpholog Jahrb XV:21–60Google Scholar
  23. Singla CL (1974) Ocelli of hydromedusae. Cell Tissue Res 149:413–429PubMedCrossRefGoogle Scholar
  24. Singla CL, Weber C (1982a) Fine-structure of the ocellus of Sarsia tubulosa (Hydrozoa, Anthomedusae). Zoomorphology 100:11–22CrossRefGoogle Scholar
  25. Singla CL, Weber C (1982b) Fine-structure studies of the ocelli of Polyorchis penicillatus (Hydrozoa, Anthomedusae) and their connection with the nerve ring. Zoomorphology 99:117–129CrossRefGoogle Scholar
  26. Skogh C, Garm A, Nilsson D-E, Ekström P (2006) Bilaterally symmetrical rhopalial nervous system of the box jellyfish Tripedalia cystophora. J Morphol 267:1391–1405PubMedCrossRefGoogle Scholar
  27. Suga H, Schmid V, Gehring WJ (2008) Evolution and functional diversity of jellyfish opsins. Curr Biol 18:51–55PubMedCrossRefGoogle Scholar
  28. Yamasu T, Yoshida M (1976) Fine-structure of complex ocelli of a cubomedusan, Tamoya bursaria Haeckel. Cell Tissue Res 170:325–339PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Cell and Organism BiologyLund UniversityLundSweden
  2. 2.Department of Comparative ZoologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations