Journal of Comparative Physiology A

, Volume 195, Issue 5, pp 463–472 | Cite as

Spatial unmasking in the echolocating Big Brown Bat, Eptesicus fuscus

  • Susan Sümer
  • Annette Denzinger
  • Hans-Ulrich Schnitzler
Original Paper


Masking affects the ability of echolocating bats to detect a target in the presence of clutter targets. It can be reduced by spatially separating the targets. Spatial unmasking was measured in a two-alternative-forced-choice detection experiment with four Big Brown Bats detecting a wire at 1 m distance. Depth dependent spatial unmasking was investigated by the bats detecting a wire with a diameter of 1.2 mm in front of a masker with a threshold distance of 11 cm behind the wire. For angle dependent spatial unmasking the masker was turned laterally, starting from its threshold position at 11 cm. With increasing masker angles the bats could detect thinner wires with diameters decreasing from 1.2 mm (target strength −36.8 dB) at 0° to 0.2 mm (target strength −63.0 dB) at 22°. Without masker, the bats detected wire diameters of 0.16 mm (target strength −66.2 dB), reached with masker positions beyond 23° (complete masking release). Analysis of the sonar signals indicated strategies in the echolocation behavior. The bats enhanced the second harmonics of their signals. This may improve the spatial separation between wire and masker due to frequency-dependent directionality increase of sound emission and echo reception.


Echolocation Eptesicus fuscus Detection Spatial unmasking Clutter 





Sound pressure level


Peak equivalent sound pressure level


Target strength


Root mean square


  1. Arbogast TL, Mason CR, Kidd G Jr (2002) The effect of spatial separation on informational and energetic masking of speech. J Acoust Soc Am 112(5):2086–2098PubMedCrossRefGoogle Scholar
  2. Blough DS (1961) Animal psychophysics. Sci Am 205:113–122CrossRefGoogle Scholar
  3. Brungart DS, Rabinowitz WM (1999) Auditory localization of nearby sources. Head-related transfer functions. J Acoust Soc Am 106(3):1465–1479PubMedCrossRefGoogle Scholar
  4. Dent ML, Larsen ON, Dooling RJ (1997) Free-field binaural unmasking in budgerigars (Melopsittacus undulates). Behav Neurosci 111(3):590–598PubMedCrossRefGoogle Scholar
  5. Denzinger A (1995) Echoschalldruck und Dressurerfahrung beeinflussen die Entfernungsmessung bei der Fledermaus Eptesicus fuscus. Dissertation, Eberhard-Karls-Universität, TübingenGoogle Scholar
  6. Denzinger A, Schnitzler HU (1998) Echo SPL, training experience, and experimental procedure influence the ranging performance in the big brown bat, Eptesicus fuscus. J Comp Physiol A 183:213–224PubMedCrossRefGoogle Scholar
  7. Denzinger A, Schnitzler HU (2004) Perceptual tasks in echolocating bats. In: Ilg UJ, Bülthoff HH, Mallot HA (eds) Dynamic perception. Akademische Verlagsgesellschaft, Berlin, pp 33–38Google Scholar
  8. Dubno JR, Ahlstrom JB, Horwitz AR (2002) Spectral contributions to the benefit from spatial separation of speech and noise. J Speech Lang Hear Res 45(6):1297–1310PubMedCrossRefGoogle Scholar
  9. Feng AS, Simmons JA, Kick SA (1978) Echo detection and target-ranging neurons in the auditory system of the bat Eptesicus fuscus. Science 202(4368):645–648PubMedCrossRefGoogle Scholar
  10. Freyman RL, Helfer KS, McCall DD, Clifton RK (1999) The role of perceived spatial separation in the unmasking of speech. J Acoust Soc Am 106(6):3578–3588PubMedCrossRefGoogle Scholar
  11. Freyman RL, Balakrishnan U, Helfer KS (2001) Spatial release from informational masking in speech recognition. J Acoust Soc Am 109(5):2112–2122PubMedCrossRefGoogle Scholar
  12. Gellermann LW (1933) Chance orders of alternating stimuli in visual discrimination experiments. J Genet Psychol (42):206–208Google Scholar
  13. Griffin DR (1958) Listening in the dark. Yale University Press, New HavenGoogle Scholar
  14. Griffin DR (1974) Listening in the dark. Dover, New YorkGoogle Scholar
  15. Hartley DJ (1992) Stabilization of perceived echo amplitudes in echolocating bats. I Echo detection and automatic gain control in the big brown bat, Eptesicus fuscus, and the fishing bat, Noctilio leporinus. J Acoust Soc Am 91:1120–1132PubMedCrossRefGoogle Scholar
  16. Henson OW Jr (1965) The activity and function of the middle-ear muscles in echolocating bats. J Physiol A 180:871–887Google Scholar
  17. Kick SA (1982) Target detection by the echolocating bat, Eptesicus fuscus. J Comp Physiol A 145:431–435CrossRefGoogle Scholar
  18. Kick SA, Simmons JA (1984) Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. J Neurosci 4:2725–2737PubMedGoogle Scholar
  19. Kopčo N, Shinn-Cunningham BG (2003) Spatial unmasking of nearby pure-tone targets in a simulated anechonic environment. J Acoust Soc Am 114(5):2856–2870PubMedCrossRefGoogle Scholar
  20. Masters WM, Jacobs SC (1989) Target detection and range resolution by the big brown bat (Eptesicus fuscus) using normal and time-reversed model echoes. J Comp Physiol A 166:65–73CrossRefGoogle Scholar
  21. Masters WM, Raven KAS (2000) Range discrimination by big brown bats (Eptesicus fuscus) using altered model echoes: implications for signal processing. J Acoust Soc Am 107:625–637PubMedCrossRefGoogle Scholar
  22. Mogdans J, Schnitzler H-U, Ostwald J (1993) Discrimination of 2-wavefront echoes by the big brown bat, Eptesicus fuscus. Behavioral experiments and receiver simulations. J Comp Physiol A 172:309–323PubMedCrossRefGoogle Scholar
  23. Møhl B (1986) Detection by a pipistrelle bat of normal and reversed replica of its sonar pulses. Acoustica 61:75–82Google Scholar
  24. Møhl B (1988) Target detection by echolocating bats. In: Nachtigall PE, Moore PWB (eds) Animal sonar: processes and performance. Plemnum Press, New York, pp 435–450Google Scholar
  25. Møhl B, Surlykke A (1989) Detection of sonar signals in the presence of pulses of masking noise by the echolocating bat, Eptesicus fuscus. J Comp Physiol A 165:119–124CrossRefGoogle Scholar
  26. Moss CF, Schnitzler HU (1989) Accuracy of target ranging in echolocating bats: acoustic information processing. J Comp Physiol A 165:383–393CrossRefGoogle Scholar
  27. Moss CF, Schnitzler HU (1995) Behavioral studies of auditory information processing. In: Popper AN, Fay RR (eds) Springer handbook of auditory research, hearing by bats. Springer, New YorkGoogle Scholar
  28. Moss CF, Simmons JA (1993) Acoustic image representation of a point target in the bat Eptesicus fuscus. Evidence for sensitivity to echo phase in bat sonar. J Acoust Soc Am 93:1553–1562PubMedCrossRefGoogle Scholar
  29. Moss CF, Bohn K, Gilkenson H, Surlykke A (2006) Active listening for spatial orientation in a complex auditory scene. PLoS Biol 4(4):e79 Epub 7 Mar 2006PubMedCrossRefGoogle Scholar
  30. Peissig J, Kollmeier B (1997) Directivity of binaural noise reduction in spatial multiple noise-source arrangements for normal and impaired listeners. J Acoust Soc Am 101:1660–1670PubMedCrossRefGoogle Scholar
  31. Saberi K, Dostal L, Sadralodabai T, Bull V, Perrott DR (1991) Free-field release from masking. J Acoust Soc Am 90(3):1355–1370PubMedCrossRefGoogle Scholar
  32. Schnitzler HU, Kalko EKV (2001) Echolocation by insect-eating bats. BioScience (51, 7):557–569Google Scholar
  33. Schnitzler HU, Moss CF, Denzinger A (2003) From spatial orientation to food acquisition in echolocating bats. TRENDS in ecology and evolution (18,8): 386–394Google Scholar
  34. Shinn-Cunningham BG (2002) Speech intelligibility, spatial unmasking, and realism in reverberant spatial auditory displays. In: Proceedings of the 2002 International conference on audit. display, Kyoto, Japan, 2–5 July 2002Google Scholar
  35. Shinn-Cunningham BG, Schickler J (2001) Spatial unmasking of nearby speech sources in a simulated anechoic environment. J Acoust Soc Am 110(2):1118–1129PubMedCrossRefGoogle Scholar
  36. Simmons JA (2005) Big brown bats and june beetles multiple pursuit strategies in a seasonal acoustic predator–prey system. ARLO 6(4):238–242CrossRefGoogle Scholar
  37. Simmons JA, Kick SA, Moffat AJM, Masters WM, Kon D (1988) Clutter interference along the target range axis in the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 84(2):551–559PubMedCrossRefGoogle Scholar
  38. Simmons JA, Freedman EG, Stevenson SB, Chen L, Wohlgenant TJ (1989) Clutter interference and the integration time of echoes in the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 86(4):1318–1332PubMedCrossRefGoogle Scholar
  39. Simmons JA, Moffat AJM, Masters WM (1992) Sonar gain control and echo detection thresholds in the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 91(2):1150–1163PubMedCrossRefGoogle Scholar
  40. Simmons JA, Eastman KM, Horowitz SS, O’Farrell MJ, Lee DN (2001) Versatility of biosonar in the big brown bat, Eptesicus fuscus. ARLO 2(1):43–48CrossRefGoogle Scholar
  41. Stilz WP (2003) Akustische Untersuchungen zur Echoortung bei Fledermäusen. Dissertation, Eberhard-Karls-Universität, TübingenGoogle Scholar
  42. Suga N, Jen PH-S (1975) Peripheral control of acoustic signals in the auditory system of echolocating bats. J Exp Biol 62:277–311PubMedGoogle Scholar
  43. Surlykke A, Moss CF (2000) Echolocating behavior of big brown bats, Eptesicus fuscus, in the field and in the laboratory. J Acoust Soc Am 108:2419–2429PubMedCrossRefGoogle Scholar
  44. Troest N, Mohl B (1989) The detection of phantom targets in noise by serotine bats; negative evidence for the coherent receiver. J Comp Physiol A 159:559–567CrossRefGoogle Scholar
  45. Wadsworth J, Moss CF (2000) Vocal control of acoustic information for sonar discriminations by the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 107:2265–2271PubMedCrossRefGoogle Scholar
  46. Zurek PM (1993) Binaural advantages and directional effects in speech intelligibility. In: Studebaker GA, Hochberg I (eds) Acoustical factors affecting hearing aid performance II. Allyn and Bacon, BostonGoogle Scholar
  47. Zwicker E, Fastl H (1999) Psychoacoustics. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Susan Sümer
    • 1
  • Annette Denzinger
    • 1
  • Hans-Ulrich Schnitzler
    • 1
  1. 1.Lehrstuhl Tierphysiologie, Zoologisches InstitutUniversität TübingenTübingenGermany

Personalised recommendations