Journal of Comparative Physiology A

, Volume 195, Issue 2, pp 175–182 | Cite as

Lens optical properties in the eyes of large marine predatory teleosts

  • Ronald H. H. Kröger
  • Kerstin A. Fritsches
  • Eric J. Warrant
Original Paper


The optical properties of the crystalline lenses were studied in a variety of large predatory teleosts (bony fishes) that forage in the open ocean, some of them at considerable depths. We found the first fish lenses that are free of measurable longitudinal spherical aberration, i.e., are perfectly monofocal, in contrast to the multifocal lenses that are typical for smaller fishes living close to the surface. In fact, none of the lenses investigated in this study were clearly multifocal. Most, but not all, of the lenses had long normalized focal lengths (focal length/lens radius) of up to 3.3 lens radii. A monofocal lens of long focal length, combined with spectrally suitably placed cone pigments, may be the optimal solution for vision of high spatial and spectral resolutions in a habitat where the available spectrum of light is limited.


Fish Color vision Longitudinal spherical aberration Longitudinal chromatic aberration Focal length 

List of abbreviations


Phosphate buffered saline


Longitudinal chromatic aberration


Longitudinal spherical aberration


Back center distance


Beam entrance position


Focal length


Equatorial lens radius


Short wavelength sensitive


Middle wavelength sensitive


Long wavelength sensitive


Wavelength of maximum absorbance


Coefficient of determination


  1. Anonymous (2008) ASTM Standard G173-03e1 “Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface” ASTM International, West Conshohocken. Accessed March 2008
  2. Block BA (1986) Structure of the brain and eye heater tissue in marlins, sailfish, and spearfishes. J Morphol 190:169–189PubMedCrossRefGoogle Scholar
  3. Brill RW, Holts DB, Chang RKC, Sullivan S, Dewar H, Carey FG (1993) Vertical and horizontal movements of striped marlin (Tetrapturus audax) near the Hawaiian Islands, determined by ultrasonic telemetry, with simultaneous measurement of oceanic currents. Mar Biol 117:567–574CrossRefGoogle Scholar
  4. Campbell MCW, Hughes A (1981) An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils. Vision Res 21:1129–1148PubMedCrossRefGoogle Scholar
  5. Carey FG, Robison BH (1980) Daily patterns in the activities of swordfish, Xiphias gladius, observed by acoustic telemetry. Fish Bull 79:277–292Google Scholar
  6. Fernald RD, Liebman P (1980) Visual receptor pigments in the African cichlid fish, Haplochromis burtoni. Vision Res 20:857–864PubMedCrossRefGoogle Scholar
  7. Fritsches KA, Litherland L, Thomas N, Shand J (2003) Cone visual pigments and retinal mosaics in the striped marlin. J Fish Biol 63:1347–1351CrossRefGoogle Scholar
  8. Fritsches KA, Brill RW, Warrant EJ (2005) Warm eyes provide superior vision in swordfishes. Curr Biol 15:55–58PubMedCrossRefGoogle Scholar
  9. Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Vis Neurosci 17:509–528PubMedCrossRefGoogle Scholar
  10. Gustafsson OSE, Collin SP, Kröger RHH (2008) Early evolution of multifocal optics for well-focused colour vision in vertebrates. J Exp Biol 211:1559–1564PubMedCrossRefGoogle Scholar
  11. Herring P (2002) The biology of the deep ocean. Oxford University Press, OxfordGoogle Scholar
  12. Horodysky AZ, Kerstetter DW, Latour RJ, Graves JE (2007) Habitat utilization and vertical movements of white marlin (Tetrapturus albidus) released from commercial and recreational fishing gears in the western North Atlantic Ocean: inferences from short duration pop-up archival satellite tags. Fish Oceanogr 16:240–256CrossRefGoogle Scholar
  13. Jerlov NG (1976) Marine optics. Elsevier, AmsterdamCrossRefGoogle Scholar
  14. Karpestam B, Gustafsson J, Shashar N, Katzir G, Kröger RHH (2007) Multifocal lenses in coral reef fishes. J Exp Biol 210:2923–2931PubMedCrossRefGoogle Scholar
  15. Kröger RHH (2000) Optical and developmental constraints on colour vision with lens eyes. J Opt A 2:R39–R43Google Scholar
  16. Kröger RHH, Campbell MCW (1996) Dispersion and longitudinal chromatic aberration of the crystalline lens of the African cichlid fish Haplochromis burtoni. J Opt Soc Am A 13:2341–2347CrossRefGoogle Scholar
  17. Kröger RHH, Campbell MCW, Munger R, Fernald RD (1994) Refractive index distribution and spherical aberration in the crystalline lens of the African cichlid fish Haplochromis burtoni. Vision Res 34:1815–1822PubMedCrossRefGoogle Scholar
  18. Kröger RHH, Campbell MCW, Fernald RD, Wagner H-J (1999) Multifocal lenses compensate for chromatic defocus in vertebrate eyes. J Comp Physiol A 184:361–369PubMedCrossRefGoogle Scholar
  19. Lind O, Kelber A, Kröger RHH (2008) Multifocal optical systems and pupil dynamics in birds. J Exp Biol 211:2752–2758PubMedCrossRefGoogle Scholar
  20. Linthicum DS, Carey FG (1972) Regulation of brain and eye temperature by the bluefin tuna. Comp Biochem Physiol A 43:425–433PubMedCrossRefGoogle Scholar
  21. Lisney TJ, Collin SP (2007) Relative eye size in elasmobranchs. Brain Behav Evol 69:266–279PubMedCrossRefGoogle Scholar
  22. Loew ER, McFarland WN, Margulies D (2002) Developmental changes in the visual pigments of the yellowfin tuna, Thunnus albacares. Mar Fresh Behav Physiol 35:235–246CrossRefGoogle Scholar
  23. Luckhurst BE (2007) Large pelagic fishes in the wider Caribbean and Northwest Atlantic Ocean: movement patterns determined from conventional and electronic tagging. Gulf Caribb Res 19:5–14Google Scholar
  24. Malkki PE, Kröger RHH (2005) Visualization of chromatic correction of fish lenses by multiple focal lengths. J Opt A 7:691–700Google Scholar
  25. Malmström T, Kröger RHH (2006) Pupil shapes and lens optics in the eyes of terrestrial vertebrates. J Exp Biol 209:18–25PubMedCrossRefGoogle Scholar
  26. Marshall NB (1979) Developments in deep-sea biology. Poole, BandfordGoogle Scholar
  27. Matthiessen L (1882) Ueber die Beziehungen, welche zwischen dem Brechungsindex des Kerncentrums der Krystalllinse und den Dimensionen des Auges bestehen. Pfluegers Arch 27:510–523CrossRefGoogle Scholar
  28. Munz FW, McFarland WN (1973) The significance of spectral position in the rhodopsins of tropical marine fishes. Vision Res 13:1829–1874PubMedCrossRefGoogle Scholar
  29. Musyl MK, Brill RW, Boggs CH, Curran DS, Kazama TK, Seki MP (2003) Vertical movements of bigeye tuna (Thunnus obesus) associated with islands, buoys, and seamounts near the main Hawaiin Islands from archival tagging data. Fish Oceanogr 12:152–169CrossRefGoogle Scholar
  30. Nakano H, Okazaki M, Okamoto H (1997) Analysis of catch depth by species for tuna longline fishery based on catch by branch lines. Bull Nat Res Inst Far Seas Fish 0:43–62Google Scholar
  31. Palko BJ, Beardsley GL, Richards WJ (1982) Synopsis of the biological data on dolphin fishes Coryphaena hippurus and Coryphaena equiselis. NOAA Tech Rep NMFS 443:1–28Google Scholar
  32. Parin NV (1984–1986) Gempylidae. In: Whitehead PJP (ed) Fishes of the North-Eastern Atlantic and the Mediterranean = Poissons de l’Atlantique du nord-est et de la Méditerranée, vol 2. Unesco, Paris, pp 967–973Google Scholar
  33. Paxton JR, Eschmeyer WN (1998) Encyclopedia of fishes. Academic Press, San DiegoGoogle Scholar
  34. Sippel TJ, Davie PS, Holdsworth JC, Block BA (2007) Striped marlin (Tetrapturus audax) movements and habitat utilization during a summer and autumn in the Southwest Pacific Ocean. Fish Oceanogr 16:459–472CrossRefGoogle Scholar
  35. Sivak JG (1982) Optical properties of a cephalopod eye (the short finned squid, Illex illecebrosus). J Comp Physiol A 147:323–327CrossRefGoogle Scholar
  36. Sroczyński S (1976) Die chromatische Aberration der Augenlinse der Regenbogenforelle (Salmo gairdneri Rich.). Zool Jahrb Abt Allg Zool Physiol Tiere 80:432–450Google Scholar
  37. Takahashi M, Okamura H, Yokawa K, Okazaki M (2003) Swimming behaviour and migration of a swordfish recorded by an archival tag. Mar Freshw Res 54:527–534CrossRefGoogle Scholar
  38. Warrant EJ (1999) Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vision Res 39:1611–1630PubMedCrossRefGoogle Scholar
  39. Warrant EJ (2004) Vision in the dimmest habitats on earth. J Comp Physiol A 190:765–789CrossRefGoogle Scholar
  40. Warrant, EJ (2008) Nocturnal vision. In: Albright T, Masland RH (eds) The senses: a comprehensive reference [vol 2: Vision II; Basbaum AI, Kaneko A, Shepherd GM, Westheimer G (series eds), pp 53–86]. Academic Press, OxfordGoogle Scholar
  41. Warrant EJ, Locket NA (2004) Vision in the deep sea. Biol Rev 79:671–712PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Ronald H. H. Kröger
    • 1
  • Kerstin A. Fritsches
    • 2
  • Eric J. Warrant
    • 1
  1. 1.Department of Cell and Organism BiologyLund UniversityLundSweden
  2. 2.School of Biomedical SciencesUniversity of QueenslandBrisbaneAustralia

Personalised recommendations