Journal of Comparative Physiology A

, Volume 194, Issue 12, pp 989–1005 | Cite as

Bursicon, the tanning hormone of insects: recent advances following the discovery of its molecular identity

  • Hans-Willi HoneggerEmail author
  • Elizabeth M. Dewey
  • John Ewer


Bursicon was identified in 1965 as a peptide neurohormone that initiates the tanning of the insect cuticle immediately after the shedding of the old one during the final stages of the molting process. Its molecular identity as an approximately 30 kDa bioactive heterodimer consisting of two cystine knot proteins resisted elucidation for 43 years. The sequence of the two bursicon subunits is highly conserved among arthropods, and this conservation extends even to echinoderms. We review the efforts leading to bursicon’s characterization, the identification of its leucine-rich repeat-containing, G protein-coupled receptor (LGR2), and the progress towards revealing its various functions. It is now clear that bursicon regulates different aspects of wing inflation in Drosophila melanogaster besides being involved at various points in the cuticle tanning process in different insects. We also describe the current knowledge of the expression of bursicon in the central nervous system of different insects in large homologous neurosecretory cells, and the changes in its expression during the development of Manduca sexta and D. melanogaster. Although much remains to be learned, the elucidation of its molecular identity and that of its receptor has provided the breakthrough needed for investigating the diverse actions of this critical insect neurohormone.


Arthropods Neuropeptide Cuticle sclerotization Wing expansion Cystine knot protein 



The identification of partial peptides of P. americana bursicon was only possible due to the relentless help of many undergraduate students at Vanderbilt University, who dissected thousands of nervous systems for bursicon’s purification. We are indebted to many colleagues for evaluating appropriate chapters of the review and adding unpublished data. They include Dr. P. Braunig, Dr. A. J. Hsueh, Dr. S. Muthukrishnan, Dr. J. E. Natzle, Dr. Y. Park, Dr. S. G. Webster, Dr. B. White and Dr. J. H Willis. Research from our labs was supported by NSF grants (HWH and JE) and FONDECYT grant 1071079 (JE).


  1. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195PubMedCrossRefGoogle Scholar
  2. Arakane Y, Muthukrishnan S, Beeman RW, Kanost MR, Kramer KJ (2005) Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning. Proc Natl Acad Sci USA 102:11337–11342PubMedCrossRefGoogle Scholar
  3. Arakane Y, Li B, Muthukrishnan S, Beeman RW, Kramer KJ, Park Y (2008) Functional analysis of four neuropeptides, EH, ETH, CCAP and bursicon, and their receptors in adult ecdysis behavior of the red flour beetle, Tribolium castaneum. Mech Dev. doi: 10.1016/j.mod.2008.09.002
  4. Ashburner M, Misra S, Roote J, Lewis SE, Blazej R, Davis T, Doyle C, Galle R, George R, Harris N, Hartzell G, Harvey D, Hong L, Houston K, Hoskins R, Johnson G, Martin C, Moshrefi A, Palazzolo M, Reese MG, Spradling A, Tsang G, Wan K, Whitelaw K, Celniker S et al (1999) An exploration of the sequence of a 2.9-Mb region of the genome of Drosophila melanogaster: the Adh region. Genetics 153:179–219PubMedGoogle Scholar
  5. Andersen SO (2005) Cuticular sclerotization and tanning. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 4. Elsevier Pergamon, Amsterdam, pp 145–170Google Scholar
  6. Andersen SO, Peter MG, Roepstorff P (1996) Cuticular sclerotization in insects. Comp Biochem Physiol 113B:689–705Google Scholar
  7. Baker JD, Truman JW (2002) Mutations in the Drosophila glycoprotein hormone receptor, rickets, eliminate neuropeptide-induced tanning and selectively block a stereotyped behavioral program. J Exp Biol 205:2555–2565PubMedGoogle Scholar
  8. Butler SA, Laidler P, Porter JR, Kicman AT, Chard T, Cowan DA, Iles RK (1999) The β-subunit of human chorionic gonadotrophin exists as a homodimer. J Mol Endocrinol 22:185–192PubMedCrossRefGoogle Scholar
  9. Cheung CC, Loi PK, Sylwester AW, Lee TD, Tublitz NJ (1992) Primary structure of a cardioactive peptide from the tobacco hawkmoth Manduca sexta. FEBS Lett 313:165–168PubMedCrossRefGoogle Scholar
  10. Claeys I, Poels J, Simonet G, Franssens V, Van Loy T, Van Hiel MB, Breugelmans B, Vanden Broeck J (2005) Insect neuropeptide and peptide hormone receptors: current knowledge and future directions. Vitam Horm 73:217–282PubMedCrossRefGoogle Scholar
  11. Cottrell CB (1962a) The imaginal ecdysis of blowflies. The control of cuticular hardening and darkening. J Exp Biol 39:395–411Google Scholar
  12. Cottrell CB (1962b) The imaginal ecdysis of blowflies. Detection of the blood-borne darkening factor and determination of some of its properties. J Exp Biol 39:413–430Google Scholar
  13. Dai L, Dewey EM, Zitnan D, Luo CW, Honegger HW, Adams ME (2008) Identification, developmental expression, and functions of bursicon in the tobacco hawkmoth, Manduca sexta. J Comp Neurol 506:759–774PubMedCrossRefGoogle Scholar
  14. Davis NT, Homberg U, Dircksen H, Levine RB, Hildebrand JG (1993) Crustacean cardioactive peptide-immunoreactive neurons in the hawkmoth Manduca sexta and changes in their immunoreactivity during postembryonic development. J Comp Neurol 338:612–627PubMedCrossRefGoogle Scholar
  15. Davis TA, Dulcis D, Hildebrand JG (2001) Innervation of the heart and aorta of Manduca sexta. J Comp Neurol 440:245–260PubMedCrossRefGoogle Scholar
  16. Davis MM, OKeefe SL, Primrose DA, Hodgetts RB (2007) A neuropeptide hormone cascade controls the precise onset of post-eclosion cuticular tanning in Drosophila melanogaster. Development 134:4395–4404PubMedCrossRefGoogle Scholar
  17. Dewey EM, McNabb SL, Ewer J, Kuo GR, Takanishi CL, Truman JW, Honegger HW (2004) Identification of the gene encoding bursicon, an insect neuropeptide responsible for cuticle sclerotization and wing spreading. Curr Biol 14:1208–1213PubMedCrossRefGoogle Scholar
  18. Dircksen H (1998) Conserved crustacean cardioactive peptide (CCAP) neuronal networks and functions in arthropod evolution. In: Coast GM, Webster SG (eds) Recent advances in arthropod endocrinology, vol 65. Cambridge University Press, London, pp 302–333Google Scholar
  19. Dircksen H, Müller A, Keller R (1991) Crustacean cardioactive peptide in the nervous system of the locust, Locusta migratoria: an immunocytochemical study on the ventral nerve cord and peripheral innervation. Cell Tissue Res 263:439–457CrossRefGoogle Scholar
  20. Draizen TA, Ewer J, Robinow S (1999) Genetic and hormonal regulation of the death of peptidergic neurons in the Drosophila central nervous system. J Neurobiol 38:455–465PubMedCrossRefGoogle Scholar
  21. Dulcis D, Levine RB, Ewer J (2005) Role of the neuropeptide CCAP in Drosophila cardiac function. J Neurobiol 64:259–274PubMedCrossRefGoogle Scholar
  22. Eriksen KK, Hauser F, Schiott M, Pedersen K-M, Sondergaard L, Grimmelikhuijzen CJP (2000) Molecular cloning, genome organization, developmental regulation, and a knock-out mutant of a novel Leu-rich repeats-containing G protein-coupled receptor (DLGR-2) from Drosophila melanogaster. Genome Res 10:924–938PubMedCrossRefGoogle Scholar
  23. Ewer J, Truman JW (1996) Increases in cyclic 3′,5′-guanosine monophosphate (cGMP) occur at ecdysis in an evolutionarily conserved crustacean cardioactive peptide immunoreactive insect neuronal network. J Comp Neurol 370:330–341PubMedCrossRefGoogle Scholar
  24. Ewer J, Wang CM, Klukas KA, Mesce KA, Truman JW, Fahrbach SE (1998) Programmed cell death of identified peptidergic neurons involved in ecdysis behavior in the moth, Manduca sexta. J Neurobiol 37:265–280PubMedCrossRefGoogle Scholar
  25. Ewer J, Reynolds S (2002) Neuropeptide control of molting in insects. In: Pfaff DW, Arnold AP, Fahrbach SE, Etgen AM, Rubin RT (eds) Hormones, brain and behavior, vol 3, chap 35. Academic Press, San Diego, pp 1–92Google Scholar
  26. Fogal W, Fraenkel G (1969) The role of bursicon in melanization and endocuticle formation in the adult fleshfly, Sarcophaga bullata. J Insect Physiol 15:1235–1247CrossRefGoogle Scholar
  27. Fox KM, Dias JA, Van Roey P (2001) Three-dimensional structure of human follicle-stimulating hormone. Mol Endocrinol 15:378–389PubMedCrossRefGoogle Scholar
  28. Fraenkel G, Hsiao C (1962) Hormonal and nervous control of tanning in the fly. Science 138:27–29PubMedCrossRefGoogle Scholar
  29. Fraenkel G, Hsiao C (1965) Bursicon, a hormone which mediates tanning of the cuticle in the adult fly and other insects. J Insect Physiol 11:513–556CrossRefGoogle Scholar
  30. Fraenkel G, Hsiao C, Seligman M (1966) Properties of bursicon: an insect protein hormone that controls cuticular tanning. Science 151:91–93PubMedCrossRefGoogle Scholar
  31. Garcia-Scheible I, Honegger HW (1989) Peripheral neurosecretory cells of insects contain a neuropeptide with bursicon-like activity. J Exp Biol 141:453–459Google Scholar
  32. Hart CE, Bowen-Pope DF (1990) Platelet-derived growth factor receptor: current views of the two-subunit model. J Invest Dermatol 94:53–57CrossRefGoogle Scholar
  33. Hauser F, Cazzamali G, Williamson M, Blenau W, Grimmelikhuijzen CJP (2006) A review of neurohormone GPCRs present in the fruit fly Drosophila melanogaster and the honey bee Apis mellifera. Prog Neurobiol 80:1–19PubMedCrossRefGoogle Scholar
  34. Hauser F, Cazzamali G, Williamson M, Park Y, Li B, Tanaka Y, Predel R, Neupert S, Schachtner J, Verleyen P, Grimmelikhuijzen CJP (2008) Genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front Neuroendocrinol 29:142–165PubMedCrossRefGoogle Scholar
  35. Hearn MT, Gomme PT (2000) Molecular architecture and biorecognition processes of the cystine knot protein superfamily: part I. The glycoprotein hormones. J Mol Recognit 13:223–278PubMedCrossRefGoogle Scholar
  36. Herpin A, Badariotti F, Rodet F, Favrel P (2004) Molecular characterization of a new leucine-rich repeat-containing Gprotein coupled receptor from a bivalve mollusk: evolutionary implications. Biochem Biophys Acta 1680:137–144PubMedGoogle Scholar
  37. Honegger HW, Market D, Pierce LA, Dewey EM, Kostron B, Wilson M, Choi D, Klukas KA, Mesce KA (2002) Cellular localization of bursicon using antisera against partial peptide sequences of this insect cuticle-sclerotizing neurohormone. J Comp Neurol 452:163–177PubMedCrossRefGoogle Scholar
  38. Honegger HW, Dewey EM, Kostron B (2004) From bioassays to Drosophila genetics: strategies for characterizing an essential insect neurohormone, bursicon. Symp Biol Hung 55:91–102CrossRefGoogle Scholar
  39. Hopkins TL, Krchma LJ, Ahmad SA, Kramer KJ (2000) Pupal cuticle proteins of Manduca sexta: characterization and profiles during sclreotization. Insect Biochem Mol Biol 30:19–27PubMedCrossRefGoogle Scholar
  40. Huang J, Yong Z, Li M, Wang S, Liu W, Couble P, Zhao G, Huang Y (2007) RNA interference-mediated silencing of the bursicon gene induces defects in wing expansion of silkworm. FEBS Lett 581:697–701PubMedCrossRefGoogle Scholar
  41. Isaacs NW (1995) Cystine knots. Curr Opin Struct Biol 3:391–395CrossRefGoogle Scholar
  42. Kaltenhauser U, Kellermann J, Andersson K, Lottspeich F, Honegger HW (1995) Purification and partial characterization of bursicon, a cuticle sclerotizing neuropeptide in insects, from Tenebrio molitor. Insect Biochem Mol Biol 25:525–533CrossRefGoogle Scholar
  43. Kiger JA, Natzle JE, Kimbrell DA, Paddy MR, Kleinhesselink K, Gree MM (2007) Tissue remodeling during maturation of the Drosophila wing. Dev Biol 301:178–191PubMedCrossRefGoogle Scholar
  44. Kim YJ, Zitnan D, Galizia CG, Cho KH, Adams ME (2006) A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles. Curr Biol 16:1395–1407PubMedCrossRefGoogle Scholar
  45. Kimura K, Kodama A, Hayasaka Y, Ohta T (2004) Activation of the cAMP/PKA signaling pathway is required for post-ecdysial cell death in wing epidermal cells of Drosophila melanogaster. Development 131:1597–1606PubMedCrossRefGoogle Scholar
  46. Kostron B, Marquardt K, Kaltenhauser U, Honegger H (1995) Bursicon, the cuticle sclerotizing hormone-comparison of its molecular mass in different insects. J Insect Physiol 41:1045–1053CrossRefGoogle Scholar
  47. Kostron B, Kaltenhauser U, Seibel B, Bräunig P, Honegger HW (1996) Localization of bursicon in CCAP-immunoreactive cells in the thoracic ganglia of the cricket Gryllus bimaculatus. J Exp Biol 199:367–377PubMedGoogle Scholar
  48. Kostron B, Market D, Kellermann J, Carter CE, Honegger HW (1999) Antisera against Periplaneta americana Cu, Zn-superoxide dismutase (SOD): separation of the neurohormone bursicon from SOD, and immunodetection of SOD in the central nervous system. Insect Biochem Mol Biol 29:861–871PubMedCrossRefGoogle Scholar
  49. Kramer KJ, Hopkins TL (1987) Tyrosine metabolism for insect cuticle tanning. Arch Insect Biochem Physiol 6:279–301CrossRefGoogle Scholar
  50. Kramer KJ, Hopkins TL, Schaefer J (1995) Applications of solids NMR to the analysis of insect sclerotized structures. Insect Biochem Mol Biol 25:1067–1080CrossRefGoogle Scholar
  51. Kramer KJ, Kanost MR, Hopkins TL, Jiang H, Zhu YC, Xu R, Kerwin JL, Turecek F (2001) Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron 57:385–392CrossRefGoogle Scholar
  52. Koundakjian EJ, Cowan DM, Hardy RW, Becker AH (2004) The Zuker collection: a resource for the analysis of autosomal gene function in Drosophila melanogaster. Genetics 167:203–206PubMedCrossRefGoogle Scholar
  53. Locke M (2001) The Wigglesworth Lecture: insects for studying fundamental problems in biology. J Insect Physiol 47:495–507PubMedCrossRefGoogle Scholar
  54. Li B, Predel R, Neupert S, Hauser F, Tanaka Y, Cazzamali G, Williamson M, Verleyen P, Schoofs L, Schachtner J, Grimmelikhuijzen CJP, Park Y (2008) Genomics, transcriptomics, and peptidomics of peptide and protein hormones in the red flour beetle Tribolium castaneum. Genome Res 18:113–122PubMedCrossRefGoogle Scholar
  55. Luan H, Lemon WC, Peabody NC, Pohl JB, Zelensky PK, Wang D, Nitabach MN, Holmes TC, White BH (2006a) Functional dissection of a neuronal network required for cuticle tanning and wing expansion in Drosophila. J Neurosci 26:573–584PubMedCrossRefGoogle Scholar
  56. Luan HN, Peabody NC, Vinson CR, White BH (2006b) Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52:425–436PubMedCrossRefGoogle Scholar
  57. Luo CW, Dewey EM, Sudo S, Ewer J, Hsu SY, Honegger HW, Hsueh AJ (2005) Bursicon, the insect cuticle-hardening hormone, is a heterodimeric cystine knot protein that activates G protein-coupled receptor LGR2. Proc Natl Acad Sci USA 102:2820–2825PubMedCrossRefGoogle Scholar
  58. Mendive FM, Van Loy T, Claeysen S, Poels J, Williamson M, Hauser F, Grimmelikhuijzen CJ, Vassart G, Vanden Broeck J (2005) Drosophila molting neurohormone bursicon is a heterodimer and the natural agonist of the orphan receptor DLGR2. FEBS Lett 579(10):2171–2176PubMedCrossRefGoogle Scholar
  59. Mesce KA, Fahrbach SE (2002) Integration of endocrine signals that regulate insect ecdysis. Front Neuroendocrinol 23:179–199PubMedCrossRefGoogle Scholar
  60. Mills RR, Whitehead DL (1970) Hormonal control of tanning in the American cockroach: changes in blood cell permeability during ecdysis. J Insect Physiol 16:331–340CrossRefGoogle Scholar
  61. Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-Okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin-I T, Abe H, Shimada T, Morishita S, Sasaki T (2004) The genome sequence of silkworm, Bombyx mori. DNA Res 11:27–35PubMedCrossRefGoogle Scholar
  62. Miserez A, Schneberk T, Sun C, Zok FW, Waite JH (2008) The transition from stiff to compliant materials in squid beaks. Science 319:1816–1819PubMedCrossRefGoogle Scholar
  63. Natzle JE, Kiger JA Jr, Green MM (2008) Bursicon signaling mutations separate epithelial-mesenchymal transition from programmed cell death during Drosophila melanogaster wing maturation. Genetics 180:885–893PubMedCrossRefGoogle Scholar
  64. Nishi S, Hsu SY, Zell K, Hsueh AJW (2000) Characterization of two fly LGR (leucine-rich repeat-containing, G protein-coupled receptor) proteins homologous to vertebrate glycoprotein hormone receptors: constitutive activation of wild-type fly LGR1 but not LGR2 in transfected mammalian cells. Endocrinology 141:4081–4090PubMedCrossRefGoogle Scholar
  65. Park JH, Schroeder AJ, Helfrich-Förster C, Jackson FR, Ewer J (2003) Targeted ablation of CCAP neuropeptide-containing neurons of Drosophila causes specific effects in execution and circadian timing of ecdysis behavior. Development 130:2645–2656PubMedCrossRefGoogle Scholar
  66. Peabody NC, Diao F, Luan H, Wang H, Dewey EM, Honegger HW, White BH (2008) Bursicon functions within the Drosophila central nervous system to modulate wing expansion behavior, hormone secretion, and cell death. J Neurosci (accepted)Google Scholar
  67. Ren P, Lim C-S, Johnsen R, Albert PS, Pilgrim D, Riddle DL (1996) Control of C. elegans larval development by neuronal expression of a TGF-β homolog. Science 274:1389–1391PubMedCrossRefGoogle Scholar
  68. Reynolds SE (1976) Hormonal regulation of cuticle extensibility in newly emerged adult blowflies. J Insect Physiol 22:529–534PubMedCrossRefGoogle Scholar
  69. Reynolds S (1977) Control of cuticle extensibility in the wings of adult Manduca at the time of eclosion: effects of eclosion hormone and bursicon. J Exp Biol 70:27–39Google Scholar
  70. Reynolds SE (1983) Bursicon. In: Downer RGH, Laufer H (eds) Endocrinology of insects. Alan R. Liss, NY, pp 235–348Google Scholar
  71. Reynolds SE, Taghert P, Truman JW (1979) Eclosion hormone and bursicon titres and the onset of hormonal responsiveness during the last day of adult development in Manduca sexta (L). J Exp Biol 78:77–86Google Scholar
  72. Robertson HM, Navik JA, Walden KKO, Honegger HW (2007) The bursicon gene in mosquitoes: an unusual example of mRNA trans-splicing. Genetics 176:1–3CrossRefGoogle Scholar
  73. Rothberg JM, Jacobs JR, Goodman CS, Artavanis-Tsakonas S (1990) Slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes Dev 12A:2169–2187CrossRefGoogle Scholar
  74. Seligman IM (1980) Bursicon. In: Miller TA (ed) Neurohormonal techniques in insects. Springer, Berlin, pp 137–153Google Scholar
  75. Seligman IM, Friedman S, Fraenkel G (1969) Bursicon mediation of tyrosine hydroxylation during tanning in their adult cuticle in the fly Sarcophaga bullata. J Insect Physiol 15:553–562PubMedCrossRefGoogle Scholar
  76. Taghert PH, Truman JW (1982) Identification of the bursicon-containing neurones in abdominal ganglia of the tobacco hornworm, Manduca sexta. J Exp Biol 98:385–401Google Scholar
  77. Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  78. Togawa T, Dunn WA, Emmons AC, Nagao J, Willis JH (2008) Developmental expression patterns of cuticular protein genes with the R&R consensus from Anopheles gambiae. Insect Biochem Mol Biol 38:508–519PubMedCrossRefGoogle Scholar
  79. Trube A, Audehm U, Dircksen H (1994) Crustacean cardioactive peptide-immunoreactive neurons in the ventral nervous system of crayfish. J Comp Physiol 348:80–93Google Scholar
  80. Truman JW (2005) Hormonal control of insect ecdysis: endocrine cascades for coordinating behavior with physiology. Vitam Horm 73:1–30PubMedCrossRefGoogle Scholar
  81. Tublitz NJ, Truman JW (1985) Insect cardioactive peptides. II. Neurohormonal control of heart activity by two cardioacceleratory peptides in the tobacco hawkmoth, Manduca sexta. J Exp Biol 114:381–395PubMedGoogle Scholar
  82. Tublitz NJ, Sylwester AW (1990) Postembryonic alteration of transmitter phenotype in individually identified peptidergic neurons. J Neurosci 10:161–168PubMedGoogle Scholar
  83. Van Loy T, Van Hiel MB, Vandersmissen HP, Poels J, Mendive F, Vassart G, Vanden Broeck J (2007) Evolutionary conservation of bursicon in the animal kingdom. Gen Comp Endocrinol 153:59–63PubMedCrossRefGoogle Scholar
  84. Van Loy T, Vandersmissen HP, Van Hiel MB, Poels J, Verlinden H, Badisco L, Vassart G, Vanden Broeck J (2008) Comparative genomics of leucine-rich repeats containing G protein-coupled receptors and their ligands. Gen Comp Endocrinol 155:14–21PubMedCrossRefGoogle Scholar
  85. Vitt UA, Hsu SY, Hsueh AJ (2001) Evolution and classification of cystine knot-containing hormones and related extracellular signal molecules. Mol Endocrinol 15:681–694PubMedCrossRefGoogle Scholar
  86. Wappner P, Kramer KJ, Hopkins TL, Merritt M, Schaefer J, Quesada-Allué LA (1995) White pupa: a Ceratitis capitata mutant lacking catecholamines for tanning the puparium. Insect Biochem Mol Biol 25:365–373CrossRefGoogle Scholar
  87. Weber F (1995) Cyclic layer deposition in the cockroach (Blaberus craniifer) endocuticle: a circadian rhythm in leg pieces cultures in vitro. J Insect Physiol 41:153–161CrossRefGoogle Scholar
  88. Weber F, Hassenrück R (2007) Secretion of a differentiated cuticle after apolysis in vitro in cockroach leg integument.
  89. Wilcockson DC, Webster SG (2008) Identification and developmental expression of mRNAs encoding putative insect cuticle hardening hormone, bursicon in the green shore crab Carcinus maenas. Gen Comp Endocrinol 156:113–125PubMedGoogle Scholar
  90. Willis JH (1996) Metamorphosis of the cuticle, its proteins and their genes. In: Gilbert LI, Tata JR, Atkinson BG (eds) Metamorphosis, postembryonic programming of gene expression in amphibian and insects cells. Academic Press, New York, pp 253–282Google Scholar
  91. Willis JH, Iconomidoiu VA, Smith RF, Hamodrakas SJ (2005) Cuticular proteins. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, vol 4. Elsevier Pergamon, Amsterdam, pp 79–110Google Scholar
  92. Woodruff III EA, Broadie K, Honegger HW (2008) Two neuropeptides co-packaged in a single neurosecretory vesicle. Peptides. doi: 10.1016/j.peptides.2008.08.023
  93. Wright TRF (1987) The genetics of biogenic amine metabolism, sclerotiztion, and melanization in Drosophila melanogaster. Adv Genet 24:127–222PubMedCrossRefGoogle Scholar
  94. Zitnan D, Adams ME (2005) Neuroendocrine regulation of insect ecdysis. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science. Elsevier Pergamon, Amsterdam, pp 1–60Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Hans-Willi Honegger
    • 1
    Email author
  • Elizabeth M. Dewey
    • 1
  • John Ewer
    • 2
  1. 1.Department of Biological SciencesVanderbilt UniversityNashvilleUSA
  2. 2.Centro de Neurociencia, y Centro de Genómica Celular, Facultad de CienciasUniversidad de ValparaisoValparaisoChile

Personalised recommendations