Journal of Comparative Physiology A

, Volume 194, Issue 9, pp 829–839 | Cite as

Changes in food intake and glucosensing function of hypothalamus and hindbrain in rainbow trout subjected to hyperglycemic or hypoglycemic conditions

  • Sergio Polakof
  • Jesús M. Míguez
  • José L. SoengasEmail author
Original Paper


To evaluate the possible role of glucose in the control of food intake (FI) in fish and the involvement of glucosensing system in that role, we have subjected rainbow trout (via intraperitoneal injections) to control, hyperglycemic (500 mg kg−1 glucose body mass) or hypoglycemic (4 mg kg−1 bovine insulin) conditions for 10 days. The experimental design was appropriate since hypoglycemia and hyperglycemia were observed the first 5 days after treatment and changes observed in metabolic parameters in liver were similar to those of fish literature. Hyperglycemic conditions elicited small changes in FI accompanied by increased glucose and glycogen levels, glucokinase (GK) activity and glycolytic potential in hypothalamus and hindbrain. In contrast, hypoglycemic conditions elicited a marked increase in FI accompanied by decreased glucose and glycogen levels and GK activity in the same brain regions whereas both regions displayed different responses in glycolytic potential. These results allow us to hypothesize that, despite the relative intolerance to glucose of carnivorous fish, changes in plasma glucose levels in rainbow trout detected by glucosensing areas in brain regions (hypothalamus and hindbrain) are integrated in those or near areas eliciting a response in FI, which was more important under hypoglycemic than under hyperglycemic conditions.


Food intake Rainbow trout Glucosensing Hypothalamus Hindbrain 



Brockmann bodies


Cocaine- and amphetamine-regulated transcript




Low Km hexokinase (EC.


Fructose 1,6-bisphosphatase (EC.


Glucose 6-phosphatase (EC.


Hexokinase IV or glucokinase (EC.


Glucose facilitative transporter type 2


Glycogen synthase (EC.


Neuropeptide Y


Pyruvate kinase (EC.



This study was supported by research grants from Ministerio de Educación y Ciencia and European Fund for Regional Development (AGL2007-65744-C03-01/ACU), and Universidade de Vigo (Contrato-Programa para grupos de investigación consolidados). Sergio Polakof was recipient of a predoctoral fellowship from the Xunta de Galicia (Program Maria Barbeito).


  1. Baird J-P, Grill HJ, Kaplan JM (1997) Intake suppression after hepatic portal glucose infusion: all-or-none effect and its temporal threshold. Am J Physiol 272:R1454–R1460PubMedGoogle Scholar
  2. Blasco J, Fernández-Borrás J, Marimon I, Requena A (1996) Plasma glucose kinetics and tissue uptake in brown trout in vivo: effect of an intravascular glucose load. J Comp Physiol B 165:534–541CrossRefGoogle Scholar
  3. Campfield A, Smith FJ (2002) Blood glucose dynamics and control of meal initiation: a pattern detection and recognition theory. Physiol Rev 83:25–58Google Scholar
  4. Davis JD, Wirtshafter D, Asin KE, Brief B (1981) Sustained intracerebroventricular infusion of brain fuels reduces body weight and food intake in rats. Science 212:81–83PubMedCrossRefGoogle Scholar
  5. Delicio HC, Vicentini-Paulino MLM (1993) 2-Deoxyglucose-induced food intake by Nile tilapia, Oreochromis niloticus (L.). Braz J Med Biol Res 26:327–331PubMedGoogle Scholar
  6. De Pedro N, Pinillos ML, Valenciano AI, Alonso-Bedate M, Delgado MJ (1998) Inhibitory effect of serotonin on feeding behavior in goldfish: involvement of CRF. Peptides 19:505–511PubMedCrossRefGoogle Scholar
  7. Dryden S, Pickavance L, Henderson L, Williams G (1998) Hyperphagia induced by hypoglycemia in rats is independent of leptin and hypothalamic neuropeptide Y (NPY). Peptides 19:1549–1555PubMedCrossRefGoogle Scholar
  8. Fideu MD, Soler G, Ruiz-Amil M (1983) Nutritional regulation of glycolysis in rainbow trout (Salmo gairdneri R.). Comp Biochem Physiol 74B:795–799Google Scholar
  9. Gerich J, Davis J, Lorenzi M, Rizza R, Bohannon N, Karam J, Lewis S, Kaplan R, Schultz T, Cryer P (1979) Hormonal mechanisms of recovery from insulin induced hypoglycemia in man. Am J Physiol 236:E380–E385PubMedGoogle Scholar
  10. Hall JR, Short CE, Driedzic WR (2006) Sequence of Atlantic cod (Gadus morhua) GLUT4, GLUT2 and GPDH: developmental stage expression, tissue expression and relationship to starvation-induced changes in blood glucose. J Exp Biol 209:4490–4502PubMedCrossRefGoogle Scholar
  11. Harmon JS, Eilertson C, Sheridan MA, Plisetskaya EM (1991) Insulin suppression in associates with hypersomatostatinemia and hyperglucagonemia in glucose-injected rainbow trout. Am J Physiol 261:609–613Google Scholar
  12. Hemre G, Hansen T (1998) Utilisation of different dietary starch sources and tolerance to glucose loading in Atlantic salmon during parr/smolt transformation. Aquaculture 161:145–157CrossRefGoogle Scholar
  13. Kalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS (1999) Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 20:68–100PubMedCrossRefGoogle Scholar
  14. Keppler D, Decker K (1974) Glycogen: determination with amyloglucosidase. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Academic, New York, pp 1127–1131Google Scholar
  15. Levin BE, Routh VH, Kang L, Sanders NM, Dunn-Meynell AA (2004) Neuronal glucosensing: what do we know after 50 years? Diabetes 53:2521–2528PubMedCrossRefGoogle Scholar
  16. Lin X, Volkoff H, Narnaware YK, Bernier NJ, Peyon P, Peter RE (2000) Brain regulation of feeding behavior and food intake in fish. Comp Biochem Physiol 126A:415–434Google Scholar
  17. MacCormack TJ, Driedzic WR (2007) The impact of hypoxia on in vivo glucose uptake in a hypoglycemic fish, Myoxocephalus scorpius. Am J Physiol 292:R1033–R1042Google Scholar
  18. Marty N, Dallaporta M, Thorens B (2007) Brain glucose sensing, counterregulation, and energy homeostasis. Physiology 22:241–251PubMedCrossRefGoogle Scholar
  19. Matschinsky FM, Magnuson MA, Zelent D, Jetton TL, Doliba N, Han Y, Taub R, Grimsby J (2006) The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy. Diabetes 55:1–12PubMedCrossRefGoogle Scholar
  20. Mazur CN, Higgs DA, Plisetskaya EM, March BE (1992) Utilization of dietary starch and glucose tolerance in juvenile Chinook salmon (Oncorhynchus tshawytscha) of different strains in seawater. Fish Physiol Biochem 10:303–313CrossRefGoogle Scholar
  21. Mobbs CV, Isoda F, Makimura H, Mastaitis J, Mizuno T, Shu I-W, Yen K, Yang X-J (2005) Impaired glucose signaling as a cause of obesity and the metabolic syndrome: the glucoadipostatic hypothesis. Physiol Behav 85:2–23CrossRefGoogle Scholar
  22. Mommsen TP, Moon TW, Plisetskaya EM (2001) Effects of arginine on pancreatic hormones and hepatic metabolism in rainbow trout. Physiol Biochem Zool 74:668–678PubMedCrossRefGoogle Scholar
  23. Moon TW (2001) Glucose intolerance in teleost fish: fact or fiction? Comp Biochem Physiol 129B:243–249Google Scholar
  24. Navarro I, Epple A (1993) Plasma catecholamines do not respond to insulin-induced hypoglycemia in a teleost, Anguilla rostrata. Am J Physiol 265:E20–E23PubMedGoogle Scholar
  25. Ottolenghi C, Puviani AC, Baruffaldi A (1982) In vivo effects of insulin on carbohydrate metabolism of catfish (Ictalurus melas). Comp Biochem Physiol 72A:35–41CrossRefGoogle Scholar
  26. Panserat S, Médale F, Blin C, Brèque J, Vachot C, Plagnes-Juan E, Gomes E, Krishnamoorthy R, Kaushik S (2000) Hepatic glucokinase is induced by dietary carbohydrates in rainbow trout, gilhead seabream, and common carp. Am J Physiol 278:R1164–R1170Google Scholar
  27. Panserat S, Capilla E, Gutiérrez J, Frappart PO, Vachot C, Plagnes-Juan E, Aguirre P, Brèque J, Kaushik S (2001) Glucokinase is highly induced and glucose-6-phosphatase poorly repressed in liver of rainbow trout (Oncorhynchus mykiss) by a single meal with glucose. Comp Biochem Physiol B 128:275–283PubMedCrossRefGoogle Scholar
  28. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang CY, Xu C, Vianna CR, Balthasar N, Lee CE, Elmquist JK, Cowley MA, Lowell BB (2007) Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449:228–232PubMedCrossRefGoogle Scholar
  29. Polakof S, Míguez JM, Moon TW, Soengas JL (2007a) Evidence for the presence of a glucosensor in hypothalamus, hindbrain, and Brockmann bodies of rainbow trout. Am J Physiol 292:R1657–R1666CrossRefGoogle Scholar
  30. Polakof S, Míguez JM, Soengas JL (2007b) In vitro evidences for glucosensing capacity and mechanisms in hypothalamus, hindbrain and Brockmann bodies of rainbow trout. Am J Physiol 293:R1410–R1420Google Scholar
  31. Polakof S, Ceinos RM, Fernandez-Duran B, Míguez JM, Soengas JL (2007c) Daily changes in parameters of energy metabolism in brain of rainbow trout: dependence on feeding. Comp Biochem Physiol A 146:265–273Google Scholar
  32. Printz RL, Magnuson MA, Granner DK (1993) Mammalian glucokinase. Annu Rev Physiol 13:463–496Google Scholar
  33. Pugazhenthi S, Khandelwal RL (1995) Regulation of glycogen synthase activation in isolated hepatocytes. Mol Cell Biochem 149–150:95–101PubMedCrossRefGoogle Scholar
  34. Ritter S, Bugarith K, Dinh TT (2001) Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation. J Comp Neurol 432:197–216PubMedCrossRefGoogle Scholar
  35. Routh VH (2002) Glucose-sensing neurons: are they physiologically relevant? Physiol Behav 76:403–413PubMedCrossRefGoogle Scholar
  36. Ruibal C, Soengas JL, Aldegunde M (2002) Brain serotonin and the control of food intake in rainbow trout (Oncorhynchus mykiss): effects of changes in plasma glucose levels. J Comp Physiol A 188:479–484CrossRefGoogle Scholar
  37. Sanders NM, Figlewicz DP, Taborsky GJ Jr, Wilkinson CW, Daumen W, Levin BE (2006) Feeding and neuroendocrine responses after recurrent insulin-induced hypoglycemia. Physiol Behav 87:700–706PubMedCrossRefGoogle Scholar
  38. Sangiao-Alvarellos S, Míguez JM, Soengas JL (2005) Actions of growth hormone on carbohydrate metabolism and osmoregulation of rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 141:214–225PubMedCrossRefGoogle Scholar
  39. Sanz C, Roncero I, Vazquez P, Navas MA, Blazquez E (2007) Effects of glucose and insulin on glucokinase activity in rat hypothalamus. J Endocrinol 193:259–267PubMedCrossRefGoogle Scholar
  40. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404:661–671PubMedGoogle Scholar
  41. Smith PK (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85PubMedCrossRefGoogle Scholar
  42. Soengas JL, Aldegunde M (2002) Energy metabolism of fish brain. Comp Biochem Physiol 131B:271–296Google Scholar
  43. Soengas JL, Aldegunde M (2004) Brain glucose and insulin: effects on food intake and brain biogenic amines of rainbow trout. J Comp Physiol A 190:641–649CrossRefGoogle Scholar
  44. Soengas JL, Polakof S, Chen X, Sangiao-Alvarellos S, Moon TW (2006) Glucokinase and hexokinase expression and activities in rainbow trout tissues: changes during food deprivation and refeeding. Am J Physiol 291:R810–R821Google Scholar
  45. Taylor K, Lester E, Hudson B, Ritter S (2007) Hypothalamic and hindbrain NPY, AGRP and NE increase consummatory feeding responses. Physiol Behav 90:744–750PubMedCrossRefGoogle Scholar
  46. Volkoff H, Canosa LF, Unniappan S, Cerdá-Reverter JM, Bernier NJ, Kelly SP, Peter RE (2005) Neuropeptides and the control of food intake in fish. Gen Comp Endocrinol 142:3–19PubMedCrossRefGoogle Scholar
  47. Wilson RP (1994) Utilization of dietary carbohydrate by fish. Aquaculture 124:67–80CrossRefGoogle Scholar
  48. Woods SC, Stein LJ, McKay LD, Porte D (1984) Suppression of food intake by intravenous nutrients and insulin in the baboon. Am J Physiol 247:R393–R401PubMedGoogle Scholar
  49. Wright JR, O’Hali W, Yang H, Han X, Bonen A (1998) GLUT-4 deficiency and severe peripheral resistence to insulin in the teleost fish Tilapia. Gen Comp Endocrinol 111:20–27PubMedCrossRefGoogle Scholar
  50. Xue B, Kahn BB (2006) AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol 574:73–83PubMedCrossRefGoogle Scholar
  51. Youson JH, Al-Mahrouki AA, Anemiya Y, Graham LC, Montpetit CJ, Irwin DM (2006) The fish endocrine pancreas: research update and future directions in ontogenic and phylogenetic development. Gen Comp Endocrinol 148:105–115PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sergio Polakof
    • 1
  • Jesús M. Míguez
    • 1
  • José L. Soengas
    • 1
    Email author
  1. 1.Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de BioloxíaUniversidade de VigoVigoSpain

Personalised recommendations