Journal of Comparative Physiology A

, Volume 194, Issue 4, pp 313–327 | Cite as

Signals and cues in the recruitment behavior of stingless bees (Meliponini)

  • Friedrich G. BarthEmail author
  • Michael Hrncir
  • Stefan Jarau


Since the seminal work of Lindauer and Kerr (1958), many stingless bees have been known to effectively recruit nestmates to food sources. Recent research clarified properties of several signals and cues used by stingless bees when exploiting food sources. Thus, the main source of the trail pheromone in Trigona are the labial, not however the mandibular glands. In T. recursa and T. spinipes, the first stingless bee trail pheromones were identified as hexyl decanoate and octyl decanoate, respectively. The attractant footprints left by foragers at the food source are secreted by glandular epithelia of the claw retractor tendon, not however by the tarsal gland. Regarding intranidal communication, the correlation between a forager’s jostling rate and recruitment success stresses the importance of agitated running and jostling. There is no evidence for a “dance” indicating food source location, however, whereas the jostling rate depends on food quality. Thoracic vibrations, another intranidal signal well known in Melipona, were analyzed using modern technology and distinguishing substrate vibrations from airborne sound. Quantitative data now permit estimates of signal and potential communication ranges. Airflow jets as described for the honeybee were not found, and thoracic vibrations do not “symbolically” encode visually measured distance in M. seminigra.


Stingless bees Recruitment behavior Signals and cues Scent marks Vibrations 



Our own research would not have been possible without the hospitality and advice we have enjoyed for many years in the laboratories of Professor Ronaldo Zucchi at the University of São Paulo in Ribeirão Preto. The enthusiasm and scientific contributions of our collaborators mentioned on the original publications and of numerous students of Vienna University are much appreciated. Particular thanks go to Veronika Schmidt and Dirk-Louis Schorkopf. Generous financial support of our studies came from the Austrian Science Foundation FWF through grants P 14328 and P 17530 to FGB. Our work also profited from the Karl von Frisch prize awarded to FGB by the German Zoological Society and from student grants of Vienna University awarded for studies abroad.


  1. Aguilar I, Briceño D (2002) Sounds in Melipona costaricensis (Apidae: Meliponini): effect of the sugar concentration and nectar source distance. Apidologie 33:375–388CrossRefGoogle Scholar
  2. Aguilar I, Sommeijer MJ (1996) Communication in stingless bees: are the anal substances deposited by Melipona favosa scentmarks? Proc Exp Appl Entomol, NEV, Amsterdam, 7:57–63Google Scholar
  3. Aguilar I, Sommeijer M (2001) The deposition of anal excretions by Melipona favosa foragers (Apidae: Meliponinae): behavioural observations concerning the location of food sources. Apidologie 32:37–48CrossRefGoogle Scholar
  4. Aguilar I, Fonseca A, Biesmeijer JC (2005) Recruitment and communication of food source location in three species of stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie 36:313–324CrossRefGoogle Scholar
  5. Biesmeijer JC, Slaa EJ (2004) Information flow and organization of stingless bee foraging. Apidologie 35: 143–157CrossRefGoogle Scholar
  6. Boogert NJ, Hofstede FE, Aguilar Monge I (2006) The use of food source scent marks by the stingless bee Trigona corvina (Hymenoptera: Apidae): the importance of the depositor’s identity. Apidologie 37: 366–375CrossRefGoogle Scholar
  7. Butler CG, Fletcher DJC, Watler D (1969) Nest-entrance marking with pheromones by the honeybee Apis mellifera L., and a wasp, Vespula vulgaris L. Anim Behav 7:142–147CrossRefGoogle Scholar
  8. Crane E (1990) Bees and beekeeping: science, practice and world resources. Comstock Publishing Associates (Cornell University Press), Ithaca, p 614Google Scholar
  9. da Cruz-Landim C (1967) Estudo comparativo de algumas glândulas das abelhas (Hymenoptera, Apoidae) e respectivas implicações evolutivas. Arq de Zool São Paulo 15:177–290Google Scholar
  10. Dahl F (1885) Die Fussdrüsen der Insekten. Arch Mikroskop Anat 25:236–262Google Scholar
  11. Dreller C, Kirchner WH (1993) Hearing in honeybees: localization of the auditory sense organ. J Comp Physiol A 173: 275–279CrossRefGoogle Scholar
  12. Dyer FC (2002) The biology of the dance language. Annu Rev Entomol 47:917–949PubMedCrossRefGoogle Scholar
  13. Eltz T (2006) Tracing pollinator footprints on natural flowers. J Chem Ecol 32: 907–915PubMedCrossRefGoogle Scholar
  14. Esch H (1961) Über die Schallerzeugung beim Werbetanz der Honigbiene. Z vergl Physiol 45: 1–11CrossRefGoogle Scholar
  15. Esch H (1967) Die Bedeutung der Lauterzeugung für die Verständigung der stachellosen Bienen. Z vergl Physiol 56:199–220CrossRefGoogle Scholar
  16. Esch H, Esch I, Kerr WE (1965) Sound: an element common to communication of stingless bees and to dances of the honey bee. Science 149:320–321PubMedCrossRefGoogle Scholar
  17. Federle W, Brainerd EL, McMahon TA, Hölldobler B (2001) Biomechanics of the movable pretarsal adhesive organ in ants and bees. Proc Natl Acad Sci USA 98:6215–6220PubMedCrossRefGoogle Scholar
  18. Ferguson A, Free JB (1979) Production of a forage-marking pheromone by the honeybee. J Apic Res 18:128–135Google Scholar
  19. Fernández PC, Farina WM (2002) Individual recruitment in honeybees, Apis mellifera L. The effect of food source profitability on the rate of bees arriving at the feeding place. Acta Ethol 4:103–108CrossRefGoogle Scholar
  20. Free JB (1987) Pheromones of social bees. Cornell University Press, Ithaca, NYGoogle Scholar
  21. Goulson D, Stout JC, Langley J, Hughes WOH (2000) Identity and function of scent marks deposited by foraging bumblebees. J Chem Ecol 26:2897–2911CrossRefGoogle Scholar
  22. Goulson D, Chapman JW, Hughes WOH (2001) Discrimination of unrewarding flowers by bees: direct detection of rewards and use of repellent scent marks. J Insect Behav 14:669–678CrossRefGoogle Scholar
  23. Hanauer-Thieser U, Nachtigall W (1995) Flight of the honey bee VI: energetics of wind tunnel exhaustion flights at defined fuel content, speed adaptation and aerodynamics. J Comp Physiol B 65:471–483Google Scholar
  24. Heard TA (1999) The role of stingless bees in crop pollination. Annu Rev Entomol 44:183–206PubMedCrossRefGoogle Scholar
  25. Heran H (1959) Wahrnehmung zur Regelung der Flugeigengeschwindigkeit bei Apis mellifica L. Z vergl Physiol 42:103–163CrossRefGoogle Scholar
  26. Hrncir M, Jarau S, Zucchi R, Barth FG (2000) Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. II. Possible mechanisms of communication. Apidologie 31:93–113CrossRefGoogle Scholar
  27. Hrncir M, Zucchi R, Barth FG (2002) Mechanical recruitment signals in Melipona vary with gains and costs at the food source. Anais do V. Encontro sobre Abelhas, Ribeirão Preto, pp 172–175Google Scholar
  28. Hrncir M, Jarau S, Zucchi R, Barth FG (2003) A stingless bee (Melipona seminigra) uses optic flow to estimate flight distances. J Comp Physiol A 189:761–768CrossRefGoogle Scholar
  29. Hrncir M, Jarau S, Zucchi R, Barth FG (2004a) On the origin and properties of scent marks deposited at the food source by a stingless bee, Melipona seminigra. Apidologie 35:3–13CrossRefGoogle Scholar
  30. Hrncir M, Jarau S, Zucchi R, Barth FG (2004b) Thorax vibrations of a stingless bee (Melipona seminigra). I. No influence of visual flow. J Comp Physiol A 190: 539–548Google Scholar
  31. Hrncir M, Jarau S, Zucchi R, Barth FG (2004c) Thorax vibrations of a stingless bee (Melipona seminigra). II. Dependence on sugar concentration. J Comp Physiol A 190: 549–560Google Scholar
  32. Hrncir M, Barth FG, Tautz J (2006a) Vibratory and airborne-sound signals in bee communication (Hymenoptera). In: Drosopoulous S, MF Claridge (eds) Insect sounds and communication. CRC Press, Boca Raton, pp 421–436Google Scholar
  33. Hrncir M, Schmidt VM, Schorkopf DLP, Jarau S, Zucchi R, Barth FG (2006b) Vibrating the food receivers: a direct way of signal transmission in stingless bees (Melipona seminigra). J Comp Physiol A 192:879–887CrossRefGoogle Scholar
  34. Hrncir M, Gravel AI, Schmidt VM, Schorkopf DLP, Zucchi R, Barth FG (2008a) Thoracic vibrations in stingless bees (Melipona seminigra): resonances of the thorax influence vibrations associated with flight but not those associated with sound production. J Exp Biol 211(Pt 5):678–685PubMedCrossRefGoogle Scholar
  35. Hrncir M, Schorkopf DL, Schmidt VM, Zucchi R, Barth FG (2008b) The sound field generated by a vibrating stingless bee (Melipona scutellaris): signals potentially serving recruitment behaviours. J Exp Biol 211:686–698 PubMedCrossRefGoogle Scholar
  36. Hölldobler B, Wilson EO (1990) The ants. Springer, BerlinGoogle Scholar
  37. Jarau S, Hrncir M, Schmidt VM, Zucchi R, Barth FG (2003) Effectiveness of recruitment behavior in stingless bees (Apidae, Meliponini). Insectes Soc 20:365–374CrossRefGoogle Scholar
  38. Jarau S, Hrncir M, Ayasse M, Schulz C, Francke W, Zucchi R, Barth FG (2004a) A stingless bee marks food sources with a pheromone from its claw retractor tendons. J Chem Ecol 30:793–804PubMedCrossRefGoogle Scholar
  39. Jarau S, Hrncir M, Zucchi R, Barth FG (2004b) A stingless bee uses labial gland secretions for scent trail communication (Trigona recursa Smith 1863). J Comp Physiol A 190:233–239CrossRefGoogle Scholar
  40. Jarau S, Hrncir M, Zucchi R, Barth FG (2005) Morphology and structure of the tarsal glands of the stingless bee Melipona seminigra friese 1903. Naturwissenschaften 92:147–150PubMedCrossRefGoogle Scholar
  41. Jarau S, Schulz C, Hrncir M, Francke W, Zucchi R, Barth FG, Ayasse M (2006) Hexyl decanoate, the first trail pheromone compound identified in a stingless bee, Trigona recursa. J Chem Ecol 32:1555–1564PubMedCrossRefGoogle Scholar
  42. Kerr WE, Ferreira A, de Mattos NS (1963) Communication among stingless bees: additional data (Hymenoptera: Apidae). J New York Entomol Soc 71:80–90Google Scholar
  43. Kilpinen O, Storm J (1997) Biophysics of the subgenual organ of the honeybee, Apis mellifera. J Comp Physiol A 181:309–318CrossRefGoogle Scholar
  44. Kirchner WH (1994) Hearing in honeybees: the mechanical response of the bee’s antenna to near field sound. J Comp Physiol A 175:261–265CrossRefGoogle Scholar
  45. Krebs JR, Davies NB (1993) An introduction to behavioral ecology, 3rd edn. Blackwell Science, OxfordGoogle Scholar
  46. Lensky Y, Cassier P, Finkel A, Delorme-Joulie C, Levinsohn M (1985) The fine structure of the tarsal glands of the honeybee Apis mellifera L. (Hymenoptera). Cell Tissue Res 240:153–158CrossRefGoogle Scholar
  47. Lindauer M (1956) Über die Verständigung bei indischen Bienen. Z vergl Physiol 38:521–557CrossRefGoogle Scholar
  48. Lindauer M, Kerr WE (1958) Die gegenseitige Verständigung bei den stachellosen Bienen. Z vergl Physiol 41:405–434CrossRefGoogle Scholar
  49. Lindauer M, Kerr WE (1960) Communication between workers of stingless bees. Bee World 41:29–41, 65–71Google Scholar
  50. Lorenz K (1939) Vergleichende Verhaltensforschung. Zool Anz Suppl 12:69–102Google Scholar
  51. Michelsen A (2003) Signals and flexibility in the dance communication of honeybees. J Comp Physiol A 189:165–174Google Scholar
  52. Michelsen A, Towne WF, Kirchner WH, Kryger P (1987) The acoustic near field of a dancing honeybee. J Comp Physiol A 161:633–643CrossRefGoogle Scholar
  53. Michener CD (2000) The bees of the world. John Hopkins University Press, BaltimoreGoogle Scholar
  54. Michener CD, Grimaldi DA (1988) The oldest fossil bee: apoid history, evolutionary stasis, and antiquity of social behavior. Proc Natl Acad Sci USA 85:6424–6426PubMedCrossRefGoogle Scholar
  55. Moore BP (1974) Pheromones in the termite societies. In: Birch MC (ed) Pheromones. North-Holland Publishing Company, Amsterdam, pp 250–266Google Scholar
  56. Nieh JC (1998) The role of a scent beacon in the communication of food location by the stingless bee, Melipona panamica. Behav Ecol Sociobiol 43:47–58CrossRefGoogle Scholar
  57. Nieh JC (2004) Recruitment communication in stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie 35:159–182CrossRefGoogle Scholar
  58. Nieh JC, Roubik DW (1998) Potential mechanisms for the communication of height and distance by a stingless bee, Melipona panamica. Behav Ecol Sociobiol 43:387–399CrossRefGoogle Scholar
  59. Nieh JC, Contrera FAL, Nogueira-Neto P (2003a) Pulsed mass recruitment by a stingless bee, Trigona hyalinata. Proc R Soc Lond B Biol Sci 270: 2191–2196CrossRefGoogle Scholar
  60. Nieh JC, Contrera FAL, Rangel J, Imperatriz-Fonseca VL (2003b) Effect of food location and quality on recruitment sounds and success in two stingless bees, Melipona mandacaia and Melipona bicolor. Behav Ecol Sociobiol 55:87–94CrossRefGoogle Scholar
  61. Nieh JC, Ramirez S, Nogueira-Neto P (2003c) Multi-source odor-marking of food by a stingless bee, Melipona mandacaia. Behav Ecol Sociobiol 54:578–586CrossRefGoogle Scholar
  62. Nieh JC, Barreto LS, Contrera FAL, Imperatriz-Fonseca V (2004a) Olfactory eavesdropping by a competitively foraging stingless bee, Trigona spinipes. Proc R Soc Lond B Biol Sci 271:1633–1640CrossRefGoogle Scholar
  63. Nieh JC, Contrera FAL, Yoon RR, Barreto LS, Imperatriz-Fonseca VL (2004b) Polarized short odor-trail recruitment communication by a stingless bee, Trigona spinipes. Behav Ecol Sociobiol 56:435–448CrossRefGoogle Scholar
  64. Pouvreau A (1991) Morphology and histology of tarsal glands in bumble bees of the genera Bombus, Pyrobombus, and Megabombus. Can J Zool 69:866–872CrossRefGoogle Scholar
  65. Rohrseitz K, Kilpinen O (1997) Vibration transmission characteristics of the legs of freely standing honeybees. Zoology 100:80–84Google Scholar
  66. Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, New YorkGoogle Scholar
  67. Saleh N, Chittka L (2006) The importance of experience in the interpretation of conspecific chemical signals. Behav Ecol Sociobiol 61:215–220CrossRefGoogle Scholar
  68. Samwald U (2000) Mechanismen der Futterplatzrekrutierung bei Melipona seminigra merillae CKLL (1919) (Hymenoptera; Apidae; Meliponinae). Diploma Thesis, University of ViennaGoogle Scholar
  69. Sánchez D, Nieh JC, Hénaut Y, Cruz L, Vandame R (2004) High precision during food recruitment of experienced (reactivated) foragers in the stingless bee Scaptotrigona mexicana (Apidae, Meliponini). Naturwissenschaften 91:346–349PubMedCrossRefGoogle Scholar
  70. Sánchez D, Kraus FB, de Jesús Hernandez M, Vandame R (2007) Experience, but not distance, influences the recruitment precision in the stingless bee Scaptotrigona mexicana. Naturwissenschaften 94:567–573PubMedCrossRefGoogle Scholar
  71. Sandeman DC, Tautz J, Lindauer M (1996) Transmission of vibration across honeycombs and its detection by bee leg receptors. J Exp Biol 199:2585–2594PubMedGoogle Scholar
  72. Schmidt VM, Zucchi R, Barth FG (2003) A stingless bee marks the feeding site in addition to the scent path (Scaptotrigona aff. depilis moure 1942). Apidologie 34:237–248CrossRefGoogle Scholar
  73. Schmidt VM, Zucchi R, Barth FG (2005) Scent marks left by Nannotrigona testaceicornis at the feeding site: cues rather than signals. Apidologie 36:285–291CrossRefGoogle Scholar
  74. Schmidt VM, Zucchi R, Barth FG (2006a) Recruitment in a scent trail laying stingless bee (Scaptotrigona aff. depilis): changes with reduction but not with increase of the energy gain. Apidologie 37:487–500CrossRefGoogle Scholar
  75. Schmidt VM, Schorkopf DLP, Hrncir M, Zucchi R, Barth FG (2006b) Collective foraging in a stingless bee: dependence on food profitability and sequence of discovery. Anim Behav 72:1309–1317CrossRefGoogle Scholar
  76. Schmidt VM, Hrncir M, Schorkopf DL, Mateús S, Zucchi R, Barth FG (2008) Food profitability affects intranidal recruitment behavior in the stingless bee Nannotrigona testaceicornis. Apidologie (in press)Google Scholar
  77. Schmitt U, Lübke G, Francke W (1991) Tarsal secretion marks food sources in bumblebees (Hymenoptera: Apidae). Chemoecology 2:35–40CrossRefGoogle Scholar
  78. Schneider P (1975) Versuche zur Erzeugung des Verteidigungstones bei Hummeln. Zool Jb Physiol 79:111–127Google Scholar
  79. Schorkopf DL, Jarau S, Franke W, Twele R, Zucchi R, Hrncir M, Schmidt VM, Ayasse M, Barth FG (2007) Spitting out information: Trigona bees deposit saliva to signal resource locations. Proc R Soc B 274:895–898PubMedCrossRefGoogle Scholar
  80. Seeley TD (1989) Social foraging in honey bees: how nectar foragers assess their colony’s nutritional status. Behav Ecol Sociobiol 24:181–199CrossRefGoogle Scholar
  81. Snodgrass RE (1956) Anatomy of the honey bee. Cornell University Press, IthacaGoogle Scholar
  82. Srinivasan MS, Zhang SW, Altwein M, Tautz J (2000) Honeybee navigation: nature and calibration of the “odometer”. Science 287:851–853PubMedCrossRefGoogle Scholar
  83. Srinivasan MS, Zhang SW, Bidwell NJ (1997) Visually mediated odometry in honeybees. J Exp Biol 200:2522–2531Google Scholar
  84. Stout JC, Goulson D, Allen JA (1998) Repellent scent-marking of flowers by a guild of foraging bumblebees (Bombus spp.). Behav Ecol Sociobiol 43:317–326CrossRefGoogle Scholar
  85. Strauß G (2002) Die Rolle von Substratvibrationen als Mechanismus der Entfernungskommunikation bei Melipona seminigra FRIESE, 1907 (Hymenoptera; Apidae; Meliponinae). Diploma Thesis, University of ViennaGoogle Scholar
  86. Villa JD, Weiss MR (1990) Observations on the use of visual and olfactory cues by Trigona spp foragers. Apidologie 21:541–545CrossRefGoogle Scholar
  87. von Frisch K (1965) Tanzsprache und Orientierung der Bienen. Springer, BerlinGoogle Scholar
  88. Wilms W, Imperatriz-Fonseca VL, Engels W (1996) Resource partitioning between highly eusocial bees and possible impact of the introduced Africanized honeybee on native stingless bees in the Brazilian Atlantic Forest. Stud Neotrop Fauna Environ 31:137–151CrossRefGoogle Scholar
  89. Winston ML (1987) The biology of the honey bee. Harvard University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Friedrich G. Barth
    • 1
    Email author
  • Michael Hrncir
    • 2
  • Stefan Jarau
    • 3
  1. 1.Department of Neurobiology and Cognition Research, Faculty of Life SciencesUniversity of ViennaViennaAustria
  2. 2.Department of Biology, FFCLRPUniversity of São PauloRibeirão PretoBrazil
  3. 3.Institute of Experimental EcologyUniversity of UlmUlmGermany

Personalised recommendations