Journal of Comparative Physiology A

, Volume 194, Issue 5, pp 429–439 | Cite as

Absence of functional short-wavelength sensitive cone pigments in hamsters (Mesocricetus)

  • Gary A. Williams
  • Gerald H. Jacobs
Original Paper


Studies of Syrian golden hamsters (Mesocricetus auratus) have yielded contradictory evidence as to whether the retina of this species supports a population of cones containing short-wavelength sensitive pigments. We undertook a re-examination of this issue by (a) measuring lens transmission, (b) determining complete spectral sensitivity functions using electroretinogram (ERG) flicker photometry, (c) employing a sensitive chromatic-adaptation paradigm in conjunction with ERG measurements to conduct a specific search for the presence of a short-wavelength sensitive mechanism, and (d) assaying for the presence of retinal mRNA using real-time, reverse transcription polymerase chain reactions (RT-PCR). Parallel measurements were made on Turkish hamster (Mesocricetus brandtii) and control measurements were derived from recordings made on a rodent whose retina is known to contain a population of short-wavelength sensitive cones (the rat, Rattus norvegicus). Although UV opsin transcripts can be detected in the retina of the Syrian hamster, the electrophysiological measurements imply that these are not translated. Syrian hamsters thus lack a functional short-wavelength sensitive pigment, and that seems also true for the Turkish hamster. Members of this genus belong to a disparate group of mammals that have lost function of their short-wavelength sensitive cone pigments through ancestral opsin gene mutations.


Hamsters Mesocricetus Short-wavelength sensitive cone pigments Opsin gene mutations Electroretinogram 



We thank Kris Krogh and Jack Calderone for help with some of the measurements. All animal care and experimental procedures were in accordance with institutional care and use guidelines and with the Principles of animal care, publication No. 86–23 of the National Institutes of Health. This research was facilitated by a grant from the National Eye Institute (EY002052)


  1. Akula JD, Lyubarsky AL, Naarendorp F (2003) The sensitivity and spectral identity of cones driving the b-wave of the rat electroretinogram. Visual Neurosci 20:109–117CrossRefGoogle Scholar
  2. Brainard GC, Barker FM, Hoffman RJ, Stetson MH, Hanifin JP, Podolin PL, Rollag MD (1994) Ultraviolet regulation of neuroendocrine and circadian physiology in rodents. Vision Res 34:1521–1533PubMedCrossRefGoogle Scholar
  3. Calderone JB, Jacobs GH (1999) Cone receptor variations and their functional consequences in two species of hamster. Visual Neurosci 16:53–63CrossRefGoogle Scholar
  4. Calkins DJ (2001) Seeing with S cones. Prog Retinal Eye Res 20:255–287CrossRefGoogle Scholar
  5. Carvalho LS, Cowing JA, Wilkie SE, Bowmaker JK, Hunt DM (2006) Shortwave visual sensitivity in tree and flying squirrels reflects changes in lifestyle. Curr Biol 16:R81–R83CrossRefGoogle Scholar
  6. David-Gray ZK, Bellingham J, Munoz M, Avivi A, Nevo E, Foster RG (2002) Adaptive loss of ultraviolet-sensitive/violet-sensitive (UVS/VS) cone opsin in the blind mole rat (Spalax ehrenbergi). Eur J Neurosci 15:1186–1194CrossRefGoogle Scholar
  7. Fasick JI, Cronin TW, Hunt DM, Robinson PR (1998) The visual pigments of the bottlenose dolphin (Tursiops truncatus). Visual Neurosci 15:643–651CrossRefGoogle Scholar
  8. Fulk GW (1976) Notes on the activity, reproduction and social behaviour of Octodon degus. J Mammol 57:495–505CrossRefGoogle Scholar
  9. Glösmann M, Ahnelt PK (2002) A mouse-like retinal cone phenotype in the Syrian hamster: S opsin coexpressed with M opsin in a common cone photoreceptor. Brain Res 929:139–146PubMedCrossRefGoogle Scholar
  10. Glösmann M, Peichl L, Neumann K, Gattermann R (2006) Lack of a functional shortwave-sensitive cone opsin is a species trait in the golden hamster. Invest Ophthalmol Visual Sci 47:E-Abstract 2838Google Scholar
  11. Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In search of the visual pigment template. Visual Neurosci 17:509–528CrossRefGoogle Scholar
  12. Gunduz B, Stetson MH (1998) The impact of photoperiods and melatonin on gonadal development in juvenile Turkish hamsters (Mescocricetus brandti). J Pineal Res 25:193–200PubMedCrossRefGoogle Scholar
  13. Heth G, Todrank J, Johnston RE (1999) Similarity in the qualities of individual odors among kin and species in Turkish (Mesocricteus brandti) and golden (Mesocricetus auratus) hamsters. J Comp Psychol 113:3421–3326CrossRefGoogle Scholar
  14. Hisatomi O, Tokunaga F (2002) Molecular evolution of proteins involved in vertebrate phototransduction. Comp Biochem Physiol B 133:509–522PubMedCrossRefGoogle Scholar
  15. Hunt DM, Cowing JA, Wilkie SE, Parry JWL, Poopalasundaram S, Bowmaker JK (2004) Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates. Photochem Photobiol Sci 3:713–720PubMedCrossRefGoogle Scholar
  16. Jacobs GH (1993) The distribution and nature of colour vision among the mammals. Biol Rev 68:413–471PubMedCrossRefGoogle Scholar
  17. Jacobs GH (1996) Primate photopigments and primate color vision. Proc Natl Acad Sci USA 93:577–581PubMedCrossRefGoogle Scholar
  18. Jacobs GH, Deegan JF II (1992) Cone photopigments in nocturnal and diurnal procyonids. J Comp Physiol A 351:351–358Google Scholar
  19. Jacobs GH, Neitz J, Deegan JF II (1991) Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353:655–656PubMedCrossRefGoogle Scholar
  20. Jacobs GH, Neitz M, Neitz J (1996a) Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proc Roy Soc Lond B 263:705–710CrossRefGoogle Scholar
  21. Jacobs GH, Neitz J, Krogh K (1996b) Electroretinogram flicker photometry and its applications. J Opt Soc Am A 13:641–648CrossRefGoogle Scholar
  22. Jacobs GH, Fenwick JA, Williams GA (2001) Cone-based vision of rats for ultraviolet and visible lights. J Exp Biol 204:2439–2446PubMedGoogle Scholar
  23. Jacobs GH, Calderone JB, Fenwick JA, Krogh K, Williams GA (2003) Visual adaptations in a diurnal rodent, Octodon degus. J Comp Physiol A 189:347–361Google Scholar
  24. Kacher-Cobb J, Bialozynski C, Neitz J, Jacobs GH, Neitz M (1999) UV cone pigment genes from Syrian and Siberian hamsters. Invest Ophthalmol Vis Sci Abstracts 40:S353Google Scholar
  25. Kawamura S, Kubotera N (2004) Ancestral loss of short wave-sensitive cone visual pigment in lorsiform prosiminans, contrasting with its strict conservation in other prosimians. J Mol Evol 58:14–21CrossRefGoogle Scholar
  26. Levenson DH, Dizon A (2003) Genetic evidence for the ancestral loss of SWS cone pigments in mysticetee and odontocete cetaceans. Proc Roy Soc Lond B 270:673–679CrossRefGoogle Scholar
  27. Levenson DH, Ponganis PJ, Crognale MA, Deegan JF II, Dizon A, Jacobs GH (2006) Visual pigments of marine carnivores: Pinnipeds, polar bear, and sea otter. J Comp Physiol A 192:833–843CrossRefGoogle Scholar
  28. Liu HS, Liu YL, Chen CC (1997) Comparison of various methods of detection of different forms of dengue virus type 2 RNA in cultured cells. Acta Virol 41:317–324PubMedGoogle Scholar
  29. Lukats A, Szabo A, Rohlich P, Vigh B, Szel A (2005) Photopigment coexpression in mammals: comparative and developmental aspects. Histol Histopathol 20:551–574PubMedGoogle Scholar
  30. Lukats A, Dkhissi-Benyaha O, Szepessy Z, Rohlich P, Vigh B, Bennett NC, Cooper HM, Szel A (2002) Visual pigment coexpression in all cones of two rodents, the Siberian hamster and the Pouched mouse. Invest Ophthalmol. Vis Sci 43:2468–2473PubMedGoogle Scholar
  31. Neumann K, Michaux J, Lebedev V, Yigit N, Colak E, Invanova N, Poltoraus A, Surov A, Markov G, Maak S, Neumann S, Gattermann R (2006) Molecular phylogeny of the Cricetinae subfamily based on the mitochrondrial cytochrome b and 125 rRNA genes and the nuclear vWF gene. Mol Phylogenet Evol 39:135–148PubMedCrossRefGoogle Scholar
  32. Ng L, Hurley JB, Dierks B, Srinivas M, Salto C, Vennstrom B, Reh TA, Forrest D (2001) A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet 27:94–98PubMedGoogle Scholar
  33. Nikonov SS, Kholodenko R, Lem J, Pugh ENJ (2006) Physiological features of the S- and M-cone photoreceptors of wild-type mice from single cell recordings. J Gen Physiol 127:359–374PubMedCrossRefGoogle Scholar
  34. Parry JWL, Bowmaker JK (2002) Visual pigment coexpression in guinea pig cones: a microspectrophotometric study. Invest Ophthalmol Vis Sci 43:1662–1665PubMedGoogle Scholar
  35. Peichl L (2005) Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? Anat Rec A 287A:1001–1012CrossRefGoogle Scholar
  36. Peichl L, Moutairou K (1998) Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia). Eur J Neurosci 10:2586–2594PubMedCrossRefGoogle Scholar
  37. Roberts MR, Srinivas M, Forrest D, de Morreale Escobar G, Reh TA (2006) Making the gradient: thyroid hormone regulates cone opsin expression in the developing mouse retina. Proc Natl Acad Sci USA 103:6218–6223PubMedCrossRefGoogle Scholar
  38. Romanenko SA, Volobouev VT, Perelman PL, Lebedev VS, Serdukova NA, Trifonov VA, Biltreuva LA, Nie W, O’Brien PCM, Bulatova NS, Ferguson-Smith MA, Yang F, Graphodatsky AS (2007) Karyotype evolution and phylogenetic relationships of hamsters (Cricetidae, Muroidea, Rodentia) inferred from chromosomal painting and banding comparison. Chromosome Res 15:283–297PubMedCrossRefGoogle Scholar
  39. Szel A, Rohlich P (1992) Two cone types of rat retina detected by anti-visual pigment antibodies. Exp Eye Res 55:47–52PubMedCrossRefGoogle Scholar
  40. Szel A, Rohlich P, Caffe AR, van Veen T (1996) Distribution of cone photoreceptors in the mammalian retina. Microsc Res Tech 35:445–462PubMedCrossRefGoogle Scholar
  41. Szel A, Rohlich P, Caffe AR, Juliusson B, Aguire G, Van Veen T (1992) Unique separation of two spectral classes of cones in the mouse retina. J Comp Neurol 325:327–342PubMedCrossRefGoogle Scholar
  42. Szel A, Csorba G, Caffe AR, Szel G, Rohlich P, van Veen T (1994) Different patterns of retinal cone topography in two genera of rodents, Mus and Apodemus. Cell Tissue Res 276:143–150PubMedCrossRefGoogle Scholar
  43. Tan Y, Yoder AD, Yamashita N, Li W-H (2005) Evidence from opsin genes rejects nocturnality in ancestral primates. Proc Natl Acad Sci USA 41:14712–14716CrossRefGoogle Scholar
  44. von Schantz M, Argamaso-Hernan SM, Szel A, Foster RG (1997) Photopigments and photoentrainment in the Syrian golden hamster. Br Res 770:131–138CrossRefGoogle Scholar
  45. Wikler KC, Rakic P (1990) Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. J Neurosci 10:3390–3401PubMedGoogle Scholar
  46. Williams GA, Calderone JB, Jacobs GH (2005) Photoreceptors and photopigments in a subterranean rodent, the pocket gopher (Thomomys bottae). J Comp Physiol A 191:125–134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Neuroscience Research Institute and Department of PsychologyUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations