Journal of Comparative Physiology A

, Volume 193, Issue 11, pp 1089–1099 | Cite as

Odor discrimination in classical conditioning of proboscis extension in two stingless bee species in comparison to Africanized honeybees

  • S. I. Mc Cabe
  • K. Hartfelder
  • W. C. Santana
  • W. M. Farina
Original Paper


Learning in insects has been extensively studied using different experimental approaches. One of them, the proboscis extension response (PER) paradigm, is particularly well suited for quantitative studies of cognitive abilities of honeybees under controlled conditions. The goal of this study was to analyze the capability of three eusocial bee species to be olfactory conditioned in the PER paradigm. We worked with two Brazilian stingless bees species, Melipona quadrifasciata and Scaptotrigona aff. depilis, and with the invasive Africanized honeybee, Apis mellifera. These three species present very different recruitment strategies, which could be related with different odor-learning abilities. We evaluated their gustatory responsiveness and learning capability to discriminate floral odors. Gustatory responsiveness was similar for the three species, although S. aff. depilis workers showed fluctuations along the experimental period. Results for the learning assays revealed that M. quadrifasciata workers can be conditioned to discriminate floral odors in a classical differential conditioning protocol and that this discrimination is maintained 15 min after training. During conditioning, Africanized honeybees presented the highest discrimination, for M. quadrifasciata it was intermediate, and S. aff. depilis bees presented no discrimination. The differences found are discussed considering the putative different learning abilities and procedure effect for each species.


Associative learning Odor discrimination Stingless bee Honeybee Classical conditioning 



We specially want to thank Adelino Penatti for his daily help and technical assistance. We are also grateful to two anonymous reviewers for their insightful comments. This study was supported by funds from ANPCYT (01-12319), University of Buenos Aires (X 036) and CONICET (02049), to W. M. Farina and by a CAPES-SECyT international exchange grant (071/04). We declare that our experiments comply with the current laws of the country in which they were performed.


  1. Abramson CI, Aquino IS, Maurizete CS, Price JM (1997) Learning in the Africanized honey bee: Apis mellifera L. Physiol Behav 3:657–674CrossRefGoogle Scholar
  2. Abramson CI, Aquino IS, Stone SM (1999) Failure to find proboscis conditioning in one-day old africanized honey bees (Apis mellifera L.) and in adult uruçu honey bees (Melipona scutellaris). Int J Comp Psychol 12:242–262Google Scholar
  3. Abramson CI, Aquino IS (2002) Behavioral studies of learning in the Africanized honey bee (Apis mellifera L.). Brain Behav Evol 59:68–86PubMedCrossRefGoogle Scholar
  4. Aguilar I, Briceño D (2002) Sounds in Melipona costaricensis (Apidae: Meliponini): effect of sugar concentration and nectar source distance. Apidologie 33:375–388CrossRefGoogle Scholar
  5. Aguilar I, Fonseca A, Biesmeijer JC (2005) Recruitment and communication of food source location in three species of stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie 36:313–324CrossRefGoogle Scholar
  6. Biesmeijer JC, Slaa JE (2006) The structure of eusocial bee assemblages in Brazil. Apidologie 37:240–258CrossRefGoogle Scholar
  7. Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol 97:107–119PubMedCrossRefGoogle Scholar
  8. Bouton ME, Moody EW (2004) Memory processes in classical conditioning. (Special issue: Neurobiology of cognition in laboratory animals: challenges and opportunities) Neurosci Biobehav Rev 28:663–674PubMedCrossRefGoogle Scholar
  9. Camargo JMF, Pedro SRD (1992) Systematics, phylogeny and biogeography of the Meliponinae (Hymenoptera, Apidae)—a minireview. Apidologie 23:599–522CrossRefGoogle Scholar
  10. Chabaud MA, Devaud JM, Pham-Delègue MH, Preat T, Kaiser L (2006) Olfactory conditioning of proboscis activity in Drosophila melanogaster. J Comp Physiol A 192:1335–1348CrossRefGoogle Scholar
  11. Chaffiol A, Laloi D, Pham-Delègue M (2005) Prior classical olfactory conditioning improves odour-cued flight orientation of honey bees in a wind tunnel. J Exp Biol 208:3731–3737PubMedCrossRefGoogle Scholar
  12. Daly KC, Smith BH (2000) Associative olfactory learning in the moth Manduca sexta. J Exp Biol 203:2025–2038PubMedGoogle Scholar
  13. Farina WM, Grüter C, Díaz PC (2005) Social learning of floral odours inside the honeybee hive. Proc R Soc B 272:1923–1928PubMedCrossRefGoogle Scholar
  14. Frings H (1944) The loci of olfactory end-organs in the honeybee, Apis mellifera Linn. J Exp Zool 97:123–134CrossRefGoogle Scholar
  15. Frisch K von (1914) Der Farbensinn und Formensinn der Biene. Zool Jahrb Phys 37:1–238Google Scholar
  16. Frisch K von (1919) Über den Geruchssinn der Bienen und seine blütenbiologische Bedeutung. Zool Jahrb Phys 37:1–238Google Scholar
  17. Frisch K von (1967) The dance language and orientation of bees. Harvard University Press, CambridgeGoogle Scholar
  18. Gerber B, Geberzahn N, Hellstern F, Klein J, Kowalksy O, Wüstenberg D, Menzel R (1996) Honey bees transfer olfactory memories established during flower visits to a proboscis extension paradigm in the laboratory. Anim Behav 52:1079–1085CrossRefGoogle Scholar
  19. Giurfa M (2003) Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Curr Opin Neurobiol 13:726–735PubMedCrossRefGoogle Scholar
  20. Grüter C, Acosta LE, Farina WM (2006) Propagation of olfactory information within the honeybee hive. Behav Ecol Sociobiol 60:707–715CrossRefGoogle Scholar
  21. Heyes CM, Galef BG (1996) Social learning in animals: the roots of culture. Academic, San DiegoGoogle Scholar
  22. Hrncir M, Jarau S, Zucchi R, Barth FG (2000) Recruitment behavior in stingless bees, Melipona scutellaris and M quadrifasciata. II. Possible mechanisms of communication. Apidologie 31:93–113CrossRefGoogle Scholar
  23. Hrncir M, Jarau S, Zucchi R, Barth FG (2004) Thorax vibrations of a stingless bee (Melipona seminigra). II. Dependence on sugar concentration. J Comp Physiol A 190:549–560Google Scholar
  24. Jarau S, Hrncir M, Zucchi R, Barth FG (2000) Recruitment behavior in stingless bees, Melipona scutellaris and M. quadrifasciata. I. Foraging at food sources differing in direction and distance. Apidologie 31:81–91CrossRefGoogle Scholar
  25. Kaiser L, Perez-Maluf R, Sandoz JC, Pham-Delegue MH (2003) Dynamics of odour learning in Leptopilina boulardi, a hymenopterous parasitoid. Anim Behav 66:1077–1084CrossRefGoogle Scholar
  26. Knudsen JT, Tollsten L, Bergström LG (1993) Floral scents. A checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280CrossRefGoogle Scholar
  27. Laloi D, Sandoz JC, Picard-Nizou AL, Pham-Delègue MH (1999) Olfactory conditioning of the proboscis extension reflex in the bumble bee Bombus terrestris. Ann Soc Entomol France 35:154–158Google Scholar
  28. Lindauer M (1948) Über die Einwirkung von Duft-und Geschmacksstoffen sowie anderer Faktoren auf die Tänze der Bienen. Z vergl Physiol 31:348–412CrossRefGoogle Scholar
  29. Lindauer M (1956) Über die Verständigung bei indischen Bienen. Z vergl Physiol 38:521–557CrossRefGoogle Scholar
  30. Lindauer M, Kerr WE (1958) Die gegenseitige Verständigung bei den stachellosen Bienen. Z Vergl Physiol 41:405–434CrossRefGoogle Scholar
  31. Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185:323–340CrossRefGoogle Scholar
  32. Menzel R, Giurfa M (2001) Cognitive architecture of a mini-brain: the honeybee. Trends Cognit Sci 5:62–71CrossRefGoogle Scholar
  33. Menzel R, Müller U (1996) Learning and memory in honeybees: From behavior to neural substrates. Annu Rev Neurosci 19:379–404PubMedCrossRefGoogle Scholar
  34. Michener CD (2000) The bees of the world. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  35. Nieh JC (1998a) The role of a scent beacon in the communication of food location by the stingless bee, Melipona panamica. Behav Ecol Sociobiol 43:47–58CrossRefGoogle Scholar
  36. Nieh JC (1998b) The food recruitment dance of the stingless bee, Melipona panamica. Behav Ecol Sociobiol 43:133–145CrossRefGoogle Scholar
  37. Nieh JC (2004) Recruitment communication in stingless bees (Hymenoptera, Apidae, Meliponini). Apidologie 35:159–182CrossRefGoogle Scholar
  38. Nieh JC, Tautz J, Spaethe J, Bartareau T (1999) The communication of food location by a primitive stingless bee, Trigona carbonaria. Zoology 102(4):238–246Google Scholar
  39. Page RE, Erber J, Fondrk MK (1998) The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). J Comp Physiol A 182:489–500PubMedCrossRefGoogle Scholar
  40. Pankiw T, Page RE (1999) The effects of genotype, age, and caste on response thresholds to sucrose and foraging behavior of honeybees. J Comp Physiol A 185:207–213PubMedCrossRefGoogle Scholar
  41. Pankiw T, Nelson M, Page RE, Fondrk MK (2004) The communal crop: modulation of sucrose response thresholds of pre-foraging honey bees with incoming nectar quality. Behav Ecol Sociobiol 55:286–292CrossRefGoogle Scholar
  42. Pessotti I, Sénéchal AM (1981) Aprendizagem em abelhas. I: Discriminaçao simples em onze espécies. Acta Amazonica 11: 653–658Google Scholar
  43. Roubik DW (1978) Competitive interactions between Africanized honeybees and native neotropical pollinators. Science 201:1030–1032PubMedCrossRefGoogle Scholar
  44. Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, New YorkGoogle Scholar
  45. Sandoz JC, Laloi D, Odoux JF, Pham-Delègue MH (2000) Olfactory information transfer in the honeybee: Compared efficiency of classical conditioning and early exposure. Anim Behav 59:1025–1034PubMedCrossRefGoogle Scholar
  46. Schacter DL, Buckner RL (1998) Priming and the brain. Neuron 20:185–195PubMedCrossRefGoogle Scholar
  47. Schmidt VM, Zucchi R, Barth FG (2003) A stingless bee marks the feeding site in addition to the scent path (Scaptotrigona aff. deplis). Apidologie 34:237–248CrossRefGoogle Scholar
  48. Schorkopf DLP, Jarau S, Francke W, Twele R, Zucchi R, Hrncir M, Schmidt VM, Ayasse M, Barth FG (2007) Spitting out information: Trigona bees deposit saliva to signal resource locations. Proc R Soc B 274:895–898PubMedCrossRefGoogle Scholar
  49. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research. 3rd edn. W. H. Freeman and Co, New YorkGoogle Scholar
  50. Takeda K (1961) Classical conditioned response in the honeybee. J Insect Physiol 6:168–179CrossRefGoogle Scholar
  51. Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157:263–277PubMedCrossRefGoogle Scholar
  52. Watanabe H, Kobayashi Y, Sakura M, Matsumoto Y, Mizunami M (2003) Classical olfactory conditioning in the cockroach Periplaneta americana. Zool Sci 20:1447–1454PubMedCrossRefGoogle Scholar
  53. Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard WS, Smith DR, Suarez AV, Weaver D, Tsutsui ND (2006) Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science 314:642–645PubMedCrossRefGoogle Scholar
  54. Wilms W, Wiechers B (1997) Floral resource partitioning between native Melipona bees and the introduced Africanized honey bee in the Brazilian Atlantic rainforest. Apidologie 28: 339–355CrossRefGoogle Scholar
  55. Wilms W, Imperatriz-Fonseca VL, Engels W (1996) Resource partitioning between highly eusocial bees and possible impact of the introduced Africanized honeybee on native stingless bees in the Brazilian Atlantic rainforest. Stud Neotrop Fauna Environ 31:137–151CrossRefGoogle Scholar
  56. Zar JH (1999) Biostatistical analysis. 4th edn. Prentice Hall, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • S. I. Mc Cabe
    • 1
  • K. Hartfelder
    • 2
  • W. C. Santana
    • 3
  • W. M. Farina
    • 1
  1. 1.Grupo de Estudio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, IFIBYNE-CONICET. Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  3. 3.Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil

Personalised recommendations