Advertisement

Journal of Comparative Physiology A

, Volume 193, Issue 7, pp 753–763 | Cite as

Kármán vortex street detection by the lateral line

  • Boris P. ChagnaudEmail author
  • Horst Bleckmann
  • Michael H. Hofmann
Original Paper

Abstract

Fish use the lateral line system for prey detection, predator avoidance, schooling behavior, intraspecific communication and spatial orientation. In addition the lateral line may be important for station holding and for the detection of the hydrodynamic trails (vortex streets) generated by swimming fish. We investigated the responses of anterior lateral line nerve fibers of goldfish, Carassius auratus, to unidirectional water flow (10 cm s−1) and to running water that contained a Kármán vortex street. Compared to still water conditions, both unidirectional water flow and Kármán vortex streets caused a similar increase in the discharge rate of anterior lateral line nerve fibers. If exposed to a Kármán vortex street, the amplitude of spike train frequency spectra increased at the vortex shedding frequency. This increase was especially pronounced if the fish intercepted the edge of a Kármán vortex street. Our data show that the vortex shedding frequency can be retrieved from the responses of anterior lateral line nerve fibers.

Keywords

Anterior lateral line nerve Kármán vortex street Particle image velocimetry Teleost fish Carassius auratus 

Abbreviations

Amax

Maximum amplitude of Fourier spectra divided by average amplitude

CN

Canal neuromast

cVSF

Calculated vortex shedding frequency

FV

Firing variability

KVS

Kármán vortex street

PIV

Particle image velocimetry

RMS

Root mean square

RMSpiv

RMS of PIV

SN

Superficial neuromast

U

Actual flow velocity

Uf

Nominal flow velocity

VSF

Vortex shedding frequency

W

Width of flow tank

Notes

Acknowledgments

We would like to thank S Coombs and J. Mogdans for critically reading and commenting on an early draft of the manuscript. The manuscript was improved through the comments of two anonymous reviewers. The experiments reported in this paper comply with the current animal protection law of the Federal Republic of Germany (‘Tierschutzgesetz’). Funded by DARPA and the DFG (Bl-242/10-1).

References

  1. Blickhan R, Krick C, Breithaupt T, Zehren D, Nachtigall W (1992) Generation of a vortex-chain in the wake of a subundulatory swimmer. Naturwissenschaften 79:220–221CrossRefGoogle Scholar
  2. Carton AG, Montgomery JC (2002) Responses of lateral line receptors to water flow in the Antarctic notothenioid, Trematomus bernacchii. Pol Biol 25:789–793Google Scholar
  3. Chagnaud BP, Bleckmann H, Engelmann J (2006) Neural responses of goldfish lateral line afferents to vortex motions. J Exp Biol 209:327–342PubMedCrossRefGoogle Scholar
  4. Cheng JY, Chahine GL (2001) Computational hydrodynamics of animal swimming: boundary element method and three-dimensional vortex wake structure. Comp Biochem Physiol A Mol Integr Physiol 131:51–60PubMedCrossRefGoogle Scholar
  5. Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: Evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN,Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York pp 553–593Google Scholar
  6. Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 293:102–104PubMedCrossRefGoogle Scholar
  7. Drucker EG, Lauder GV (1999) Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J Exp Biol 202:2393–2412PubMedGoogle Scholar
  8. Engelmann J, Hanke W, Mogdans J, Bleckmann H (2000) Hydrodynamic stimuli and the fish lateral line. Nature 408:51–52PubMedCrossRefGoogle Scholar
  9. Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still- and running water. J Comp Physiol [A] 188:513–526CrossRefGoogle Scholar
  10. Flock A, Wersäll J (1962) A study of the orientation of the sensory hairs of the receptor cells in the lateral line organ of fish, with special reference to the function of the receptors. J Cell Biol 15:19–27PubMedCrossRefGoogle Scholar
  11. Hanke W (2001) Hydrodynamische Spuren schwimmender Fische und ihre mögliche Bedeutung für das Jagdverhalten fischfressender Tiere. Ph D Thesis, Department of Zoology, University of BonnGoogle Scholar
  12. Hanke W, Bleckmann H (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. J Exp Biol 207:1585–1596PubMedCrossRefGoogle Scholar
  13. Hanke W, Brücker C, Bleckmann H (2000) The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203:1193–1200PubMedGoogle Scholar
  14. Liao JC (2006) The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. J Exp Biol 209:4077–4090PubMedCrossRefGoogle Scholar
  15. Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003a) Fish exploiting vortices decrease muscle activity. Science 302:1566–1569PubMedCrossRefGoogle Scholar
  16. Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003b) The Karman gait: novel body kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206:1059–1073PubMedCrossRefGoogle Scholar
  17. Linden PF, Turner JS (2004) “Optimal” vortex rings and aquatic propulsion mechanisms. Proc R Soc Lond B Biol Sci 271:647–653CrossRefGoogle Scholar
  18. Mogdans J, Bleckmann H (1998) Responses of the goldfish trunk lateral line to moving objects. J Comp Physiol A 182:659–676CrossRefGoogle Scholar
  19. Palmer LM, Mensinger AF (2004) Effect of the anesthetic tricaine (MS-222) on nerve activity in the anterior lateral line of the oyster toadfish, Opsanus tau. J Neurophysiol 92:1034–1041PubMedCrossRefGoogle Scholar
  20. Pohlmann K, Grasso FW, Breithaupt T (2001) Tracking wakes: the nocturnal predatory strategy of piscivorous catfish. Proc Natl Acad Sci USA 98:7371–7374PubMedCrossRefGoogle Scholar
  21. Pohlmann K, Atema J, Breithaupt T (2004) The importance of the lateral line in nocturnal predation of piscivorous catfish. J Exp Biol 207:2971–2978PubMedCrossRefGoogle Scholar
  22. Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus. Brain Behav Evol 34:110–131PubMedGoogle Scholar
  23. Schmitz A, Bleckmann H, Mogdans J (2006) Array morphology of the lateral line in goldfish (Carassius auratus). 99th Ann Meeting of Ger Zool SocGoogle Scholar
  24. Späth M, Schweickert W (1977) The effect of metacaine (MS-222) on the activity of the efferent and afferent nerves in the teleost lateral-line system. Naunyn Schmiedebergs Arch Pharmacol 297:9–16PubMedCrossRefGoogle Scholar
  25. Sutterlin AM, Waddy S (1975) Possible role of the posterior lateral line in obstacle entrainment by brook trout (Salvelinus fontinalis). J Fish Res Bd Can 32:2441–2446Google Scholar
  26. Vogel S (1996) Life in moving fluids. Princeton University Press, PrincetonGoogle Scholar
  27. Voigt R, Carton AG, Montgomery JC (2000) Responses of anterior lateral line afferent neurones to water flow. J Exp Biol 203:2495–2502PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Boris P. Chagnaud
    • 1
    Email author
  • Horst Bleckmann
    • 1
  • Michael H. Hofmann
    • 1
    • 2
  1. 1.Institute of ZoologyUniversity of BonnBonnGermany
  2. 2.Center for Neurodynamics, Department of BiologyUniversity of Missouri-St LouisSt LouisUSA

Personalised recommendations