Advertisement

Journal of Comparative Physiology A

, Volume 193, Issue 5, pp 537–545 | Cite as

Listening when there is no sexual signalling? Maintenance of hearing in the asexual bushcricket Poecilimon intermedius

  • Gerlind U. C. Lehmann
  • Johannes Strauß
  • Reinhard Lakes-Harlan
Original Paper

Abstract

Unisexual reproduction is a widespread phenomenon in invertebrates and lower vertebrates. If a former sexual reproducing species becomes parthenogenetic, we expect traits that were subject to sexual selection to diminish. The bushcricket Poecilimon intermedius is one of the few insect species with obligate but diploid parthenogenetic reproduction. We contrasted characters that are involved in mating in a sexually sibling species with the identical structures in the parthenogenetic P. intermedius. Central for sexual communication are male songs, while receptive females approach the males phonotactically. Compared to its sister-species P. ampliatus, the morphology of the hearing organs (acoustic spiracle, crista acustica) and the function of hearing (acoustic threshold) are reduced in P. intermedius. Nonetheless, hearing is clearly maintained in the parthenogenetic females. Natural selection by acoustic hunting bats, pleiotropy or a developmental trap may explain the well maintained hearing function.

Keywords

Neuroanatomy Bioacoustics Auditory ecology Regression Vestigialization 

Notes

Acknowledgments

We thank K.-G. Heller, A.W. Lehmann and R. Hickson for their discussion of the manuscript. GL is supported by the “Berliner Programm zur Förderung der Chancengleichheit für Frauen in Forschung und Lehre” of the Humboldt University Berlin. The experiments comply with the principles of animal care and also with current laws of the Federal Republic of Germany.

Reference

  1. Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurons in wholemount preparations. Brain Res 138:359–363PubMedCrossRefGoogle Scholar
  2. Bailey WJ (1991) Acoustic behaviour of insects. Chapman and Hall, LondonGoogle Scholar
  3. Bailey WJ, Römer H (1991) Sexual differences in auditory sensitivity: mismatch of hearing threshold and call frequency in a tettigoniid (Orthoptera, Tettigoniidae: Zaprochilinae). J Comp Physiol A 169:349–353CrossRefGoogle Scholar
  4. Bangert M, Kalmring K, Sickmann T, Stephen R, Jatho M, Lakes-Harlan R (1998) Stimulus transmission in the auditory receptor organs of the foreleg of bushcrickets (Tettigoniidae) I. The role of the tympana. Hearing Res 115:27–38CrossRefGoogle Scholar
  5. Buschbeck EK, Strausfeld NJ (1996) Visual motion–detection circuits in flies: small-field retinotopic elements responding to motion are evolutionarily conserved across taxa. J Neurosci 16:4563–4578PubMedGoogle Scholar
  6. Carson HL, Chang LS, Lyttle TW (1982) Decay of female sexual behaviour under parthenogenesis. Science 218:68–70CrossRefGoogle Scholar
  7. Costa DP, Sinervo B (2004) Field physiology: physiological insights from animals in nature. Ann Rev Physiol 66:209–238CrossRefGoogle Scholar
  8. Dumont JPC, Robertson RM (1986) Neuronal circuits: an evolutionary perspective. Science 233:849–853CrossRefGoogle Scholar
  9. Edwards JS (1997) The evolution of insect flight: implications for the evolution of the nervous system. Brain Behav Evol 50:8–12PubMedGoogle Scholar
  10. Felsenstein J (1974) The evolutionary advantage of recombination. Genetics 78:737–756PubMedGoogle Scholar
  11. Fong DW, Kane TC, Culver DC (1995) Vestigialization and loss of nonfunctional characters. Ann Rev Ecol Syst 26:249–268CrossRefGoogle Scholar
  12. Fullard JH, Ratcliffe JM, Soutar AR (2004) Extinction of the acoustic startle response in moths endemic to a bat-free habitat. J Evol Biol 17:856–861PubMedCrossRefGoogle Scholar
  13. Fullard JH, Ratcliffe JM, ter Hofstede HM (2007) Neural evolution in the bat-free habitat of Tahiti: partial regression in an antipredator auditory system. Biol Lett 3:26–28PubMedCrossRefGoogle Scholar
  14. Gerhardt HC, Huber F (2002) Acoustic communication in insects and anurans—common problems and diverse solutions. University of Chicago Press, ChicagoGoogle Scholar
  15. Ghalambor CK, Walker JA, Reznick DN (2003) Multi-trait selection, adaptation, and constraints on the evolution of burst swimming performance. Integr Comp Biol 43:431–438CrossRefGoogle Scholar
  16. Greenfield MD (2002) Signalers and receivers. Oxford University Press, OxfordGoogle Scholar
  17. Gwynne DT (2001) Katydids and bush-crickets. Reproductive behaviour and evolution of the Tettigoniidae. Comstock, IthacaGoogle Scholar
  18. Heller K-G (1988) Zur Bioakustik der Europäischen Laubheuschrecken. Josef Margraf, WeikersheimGoogle Scholar
  19. Heller K-G (1997) Geld oder Leben - die unterschiedlichen Kosten des Gesangs bei Laubheuschrecken. Jb Akad Wiss Göttingen 1997:132–152Google Scholar
  20. Heller K-G, Lehmann A (2004) Taxonomic revision of the European species of the Poecilimon ampliatus-group (Orthoptera Phaneropteridae). Mem Soc Entomol Ital 82:403–422Google Scholar
  21. Hoffmann E, Jatho M (1995) The acoustic trachea of Tettigoniids as an exponential horn: theoretical calculations and bioacoustical measurements. J Acoust Soc Am 98:1845–1851CrossRefGoogle Scholar
  22. Hoy RR (1992) The evolution of hearing in insects as adaptation to predation from bats. In: Webster DB, Fay RR, AN Popper (eds) The evolutionary biology of hearing. Springer, Heidelberg, pp 115–129Google Scholar
  23. Irschick DJ, Garland T (2001) Integrating function and ecology in studies of adaptation: investigations of locomotor capacity as a model system. Ann Rev Evol Syst 32:367–396CrossRefGoogle Scholar
  24. Kalmring K, Rössler W, Jatho M, Hoffmann E (1995) Comparison of song frequency and receptor tuning in two closely related bushcricket species. Acta Biol Hung 46:457–469PubMedGoogle Scholar
  25. Katz PS, Harris-Warwick RM (1999) The evolution of neuronal circuits underlying species-specific behaviour. Curr Opion Neurobiol 9:628–633CrossRefGoogle Scholar
  26. Kearney M (2005) Hybridization, glaciation and geographic parthenogenesis. Trends Ecol Evol 20:495–502PubMedCrossRefGoogle Scholar
  27. Ketterson ED, Nolan V (1999) Adaptation, exaptation, and constraint: a hormonal perspective. Am Nat 154:S4–S25CrossRefGoogle Scholar
  28. Kingsolver JG, Huey RB (2003) Introduction: the evolution of morphology, performance, and fitness. Integr Comp Biol 43:361–366CrossRefGoogle Scholar
  29. Lakes R, Schikorski T (1990) Neuroanatomy of Tettigoniids. In: Bailey WJ, Rentz DCF (eds) The Tettigoniidae: biology, systematics and evolution. Crawford House, Bathurst, pp 166–190Google Scholar
  30. Lakes-Harlan R, Bailey WJ, Schikorski T (1991) The auditory system of an atympanate bushcricket Phasmodes ranatriformes (Westwood) (Tettigoniidae: Orthoptera). J Exp Biol 158:307–324Google Scholar
  31. Lang F, Brandt G, Glahe M (1993) A versatile multichannel stimulator controlled by a personal computer. In: Elsner N, Heisenberg M (eds) Gene, brain, behaviour. Thieme Verlag, Stuttgart, p 892Google Scholar
  32. Lehmann GUC (2003) Review of biogeography, host range and evolution of acoustic hunting in Ormiini (Insecta, Diptera, Tachinidae), parasitoids of night-calling bushcrickets and crickets (Insecta, Orthoptera, Ensifera). Zool Anz 242:107–120CrossRefGoogle Scholar
  33. Lehmann GUC, Lehmann AW (2007) Sex differences in “time out” from reproductive activity and sexual selection in male bushcrickets (Orthoptera: Zaprochilinae: Kawanaphila mirla). J Insect Behav (in press)Google Scholar
  34. Mason A, Bailey WJ (1998) Ultrasound hearing and male–male communication in Australian katydids (Tettigoniidae: Zaprochilinae) with sexually dimorphic ears. Phys Entomol 23:139–149CrossRefGoogle Scholar
  35. McNab KB (1994) Energy conservation and the evolution of flightlessness in birds. Am Nat 144:628–642CrossRefGoogle Scholar
  36. Nevo E (1999) Mosaic evolution of subterranean mammals: regression, progression, and global convergence. Oxford University Press, OxfordGoogle Scholar
  37. Nocke H (1975) Physical and physiological properties of the tettigoniid (“grasshopper”) ear. J Comp Physiol A 100:25–57CrossRefGoogle Scholar
  38. Normark BB, Judson OP, Moran NA (2003) Genomic signatures of ancient asexual lineages. Biol J Linn Soc 79:69–84CrossRefGoogle Scholar
  39. Peck JR, Yearsley JM, Waxman D (1998) Explaining the geographic distributions of sexual and asexual populations. Nature 391:889–892CrossRefGoogle Scholar
  40. Porter ML, Crandall KA (2003) Lost along the way: the significance of evolution in reverse. Trends Ecol Evol 18:541–547CrossRefGoogle Scholar
  41. Robinson DJ, Hall MJ (2002) Sound signalling in Orthoptera. Adv Insect Physiol 29:151–278CrossRefGoogle Scholar
  42. Römer H (1983) Tonotopic organization of the auditory neuropile in the bushcricket Tettigonia viridissima. Nature 306:60–62CrossRefGoogle Scholar
  43. Schumacher R (1973) Morphologische Untersuchungen der tibialen Tympanalorgane von neun einheimischen Laubheuschrecken. Z Morphol Tiere 75:267–282CrossRefGoogle Scholar
  44. Schumacher R (1979) Zur funktionellen Morphologie des auditiven Systems der Laubheuschrecken (Orthoptera: Tettigonioidea). Entomol Gener 5:321–356Google Scholar
  45. Simmons LW, Bailey WJ (1990) Resource influenced sex roles of zaprochiline tettigoniids (Orthoptera: Tettigoniidae). Evolution 44:1853–1868CrossRefGoogle Scholar
  46. Sinervo B, Calsbeek R (2003) Physiological epistasis, ontogenetic conflict and natural selection on physiology and life history. Integr Comp Biol 43:419–430CrossRefGoogle Scholar
  47. Sismondo E (1980) Physical characteristics of the drumming of Meconema thalassinum. J Insect Physiol 26:209–212CrossRefGoogle Scholar
  48. Stumpner A (1996) Tonotopic organization of the hearing organ in a bushcricket: physiological characterization and complete staining of auditory receptor cells. Naturwissenschaften 83:81–84Google Scholar
  49. Stumpner A, Heller K-G (1992) Morphological and physiological differences of the auditory system in three related bushcrickets (Orthoptera: Phaneropteridae, Poecilimon). Physiol Entomol 17:73–80Google Scholar
  50. Stumpner A, von Helversen D (2001) Evolution and function of auditory systems in insects. Naturwissenschaften 88:159–170PubMedCrossRefGoogle Scholar
  51. Suomalainen E, Saura A, Lokka J (1987) Cytology and evolution in parthenogenesis. CRC Press, FloridaGoogle Scholar
  52. Swallow JG, Garland T (2005) Selection experiments as a tool in evolutionary and comparative physiology: insights into complex traits—an introduction to the symposium. Integr Comp Biol 45:387–390CrossRefGoogle Scholar
  53. Warchalowska-Sliwa E, Bugrov AG, Maryanska-Nadachowska A (1996) Karyotypes and C-banding patterns of some species of Phaneropterinae (Orthoptera, Tettigonioidea). Folia Biol Krakow 44:5–10Google Scholar
  54. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University Press, OxfordGoogle Scholar
  55. Wiens JJ (2001) Widespread loss of sexually selected traits: how the peacock lost its spots. Trends Ecol Evol 16:517–523CrossRefGoogle Scholar
  56. Wilkens H, Culver DC, Humphreys WF (2000) Subterranean ecosystems. Ecosystems of the world, vol 30. Elsevier, AmsterdamGoogle Scholar
  57. Yager DD (1999) Structure, development and evolution of insect auditory systems. Microsc Res Techn 47:380–400CrossRefGoogle Scholar
  58. Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Quart Rev Biol 73:415–438CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Gerlind U. C. Lehmann
    • 1
  • Johannes Strauß
    • 2
  • Reinhard Lakes-Harlan
    • 2
  1. 1.Institut für Zoologie, AG EvolutionsbiologieFreie Universität BerlinBerlinGermany
  2. 2.Institut für Tierphysiologie, AG Integrative SinnesphysiologieUniversität GießenGießenGermany

Personalised recommendations