Journal of Comparative Physiology A

, Volume 193, Issue 2, pp 279–283 | Cite as

Cyclic AMP-dependent memory mutants are defective in the food choice behavior of Drosophila

  • Katsunori Motosaka
  • Masayuki Koganezawa
  • Satoko Narikawa
  • Akira Furuyama
  • Kenji Shinozaki
  • Kunio Isono
  • Ichiro Shimada
Short Communication

Abstract

Acute choice behavior in ingesting two different concentrations of sucrose in Drosophila is presumed to include learning and memory. Effects on this behavior were examined for four mutations that block associative learning (dunce, rutabaga, amnesiac, and radish). Three of these mutations cause cyclic AMP signaling defects and significantly reduced taste discrimination. The exception was radish, which affects neither. Electrophysiological recordings confirmed that the sensitivity of taste receptors is almost indistinguishable in all flies, whether wild type or mutant. These results suggest that food choice behavior in Drosophila involves central nervous learning and memory operating via cyclic AMP signaling pathways.

Keywords

Memory mutants Learning and memory Feeding behavior Taste Ingestion 

Abbreviation

cAMP

Cyclic adenosine monophosphate

References

  1. Davis RL (2005) Olfactory memory formation in Drosophila: from molecular to systems neuroscience. Physiol Rev Neurosci 28:275–302CrossRefGoogle Scholar
  2. Dubnau J, Chiang AS, Tully T (2003) Neural substrates of memory: from synapse to system. J Neurobiol 54(1):238–253PubMedCrossRefGoogle Scholar
  3. Dubnau J, Tully T (1998) Gene discovery in Drosophila: new insights for learning and memory. Annu Rev Neurosci 21:407–444PubMedCrossRefGoogle Scholar
  4. Dudai Y, Jan YN, Byers D, Quinn WG, Benzer S (1976) Dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci USA 73:1684–1688PubMedCrossRefGoogle Scholar
  5. Duerr JS, Quinn WG (1982) Three Drosophila mutations that block associative learning also affect habituation and sensitization. Proc Natl Acad Sci USA 79:3646–3650PubMedCrossRefGoogle Scholar
  6. Ephrussi B, Beadle GW (1936) A technique of transplantation for Drosophila. Am Nat 70:218–225CrossRefGoogle Scholar
  7. Falk R, Bleiser-Avivi N, Atidia J (1976) Labellar taste organs of Drosophila melanogaster. J Morphol 150:327–342CrossRefGoogle Scholar
  8. Folkers E, Drain P, Quinn WG (1993) Radish, a Drosophila mutant deficient in consolidated memory. Proc Natl Acad Sci USA 90:8123–8127PubMedCrossRefGoogle Scholar
  9. Hiroi M, Marion-Poll F, Tanimura T (2002) Differentiated response to sugars among labellar chemosensilla in Drosophila. Zool Sci 9:1009–1018CrossRefGoogle Scholar
  10. Hodgson ES, Lettvin JY, Roeder KD (1955) Physiology of a primary chemoreceptor unit. Science 122:417–418PubMedCrossRefGoogle Scholar
  11. Koseki T, Koganezawa M, Furuyama A, Isono K, Shimada I (2004) A specific receptor site for glycerol, a new sweet tastant for Drosophila: Structure-taste relationship of glycerol in the labellar sugar receptor cell. Chem Senses 29:703–711PubMedCrossRefGoogle Scholar
  12. Kyriacou CP, Hall JC (1984) Learning and memory mutations impair acoustic priming of mating behavior in Drosophila. Nature 308:62–65CrossRefGoogle Scholar
  13. Livingstone MS, Sziber PP, Quinn WG (1984) Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell 37:205–215PubMedCrossRefGoogle Scholar
  14. Nayak SV, Singh RN (1983) Sensilla on the tarsal segments and mouthparts of adult Drosophila melanogaster Meigen (Diptera: Drosophilidae). Int J Insect Morphol Embryol 12:273–291CrossRefGoogle Scholar
  15. Quinn WG, Harris WA, Benzer S (1974) Conditioned behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 71:708–712PubMedCrossRefGoogle Scholar
  16. Quinn WG, Sziber PP, Booker R (1979) The Drosophila memory mutant amnesiac. Nature 277:212–214PubMedCrossRefGoogle Scholar
  17. Salz HK, Kiger JA (1984) Genetic analysis of chromomere 3D4 in Drosophila melanogaster II. Regulation sites for the dunce gene. Genetics 108:377–392PubMedGoogle Scholar
  18. Shanbhag SR, Park SK, Pikielny CW, Steinbrecht RA (2001) Gustatory organs of Drosophila melanogaster: fine structure and expression of the putative odorant-binding protein PBPRP2. Cell Tissue Res 304:423–437PubMedCrossRefGoogle Scholar
  19. Shimada I, Nakao M, Kawazoe Y (1987) Acute differential sensitivity and role of the central nervous system in the feeding behavior of Drosophila melanogaster. Chem Senses 12:481–490CrossRefGoogle Scholar
  20. Tanimura T, Isono K, Takamura T, Shimada I (1982) Genetic dimorphism in the taste sensitivity to trehalose in Drosophila melanogaster. J Comp Physiol 147:433–437CrossRefGoogle Scholar
  21. Waddell S, Armstrong JD, Kitamoto T, Kaiser K, Quinn WG (2000) The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell 103(5):8005–8013CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Katsunori Motosaka
    • 1
  • Masayuki Koganezawa
    • 1
  • Satoko Narikawa
    • 1
  • Akira Furuyama
    • 1
  • Kenji Shinozaki
    • 2
  • Kunio Isono
    • 2
  • Ichiro Shimada
    • 1
  1. 1.Department of Developmental Biology and Neuroscience, Graduate School of Life SciencesTohoku UniversitySendaiJapan
  2. 2.Laboratory of Information Biology, Graduate School of Information ScienceTohoku UniversitySendaiJapan

Personalised recommendations