Journal of Comparative Physiology A

, Volume 193, Issue 2, pp 217–222 | Cite as

Use of local cues in the night-time navigation of the wandering desert spider Leucorchestris arenicola (Araneae, Sparassidae)

  • Thomas Nørgaard
  • Joh R. Henschel
  • Rüdiger Wehner
Original Paper


Adult male Leucorchestris arenicola can walk round-trips of several tens of meters in search of females. Most excursions end with the spiders returning to their burrow. For small animals homing over distances of several meters is theoretically impossible without the aid of external cues. It was investigated, whether the spiders use local cues or they rely solely on global cues. Individually marked male spiders were captured during their excursions and displaced several meters inside an opaque box. Ten out of twelve displaced spiders returned to their burrows. This shows that the male L. arenicola are using local cues during their homing, as the comparatively small displacement distances could not be detected by means of global, e.g. celestial cues. In order to test whether the spiders could be using olfactory guidance, the burrows were displaced by 2 m while the spiders were out on their journeys. In 12 out of 15 experiments, the spiders did not find their burrows. These results show that the burrows do not function as olfactory beacons for the homing spiders.


Sparassidae Homing External cues Landmarks Olfaction 



We thank the Namibian Ministry of Environment and Tourism and the Gobabeb Training & Research Centre for permission to work in the Namib-Naukluft Park and for the use of facilities. This work was supported by the Swiss National Science Foundation (grant no. 31-61844.00 to R.W.) and the Department of Zoology, University of Zürich.


  1. Bartels M (1929) Sinnesphysiologische und physiologische Untersuchungen an der Trichterspinne Agelena labyrinthica (Cl.). Z Vergl Physiol 10:527–591Google Scholar
  2. Barth FG, Nakagawa T, Eguchi E (1993) Vision in the ctenid spider Cupiennius salei: spectral range and absolute sensitivity. J Exp Biol 181:63–79Google Scholar
  3. Benhamou S, Sauvé JP, Bovet P (1990) Spatial memory in large scale movements: efficiency and limitation of the egocentric coding process. J Theor Biol 145:1–12CrossRefGoogle Scholar
  4. Birkhofer K, Scheu S, Henschel JR (2006) Does territorial behaviour in the desert-living spider Leucorchestris arenicola (Araneae: Sparassidae) affect its spatial distribution? Bull Br Arachnol Soc 13:341–346Google Scholar
  5. Boles LC, Lohmann KJ (2003) True navigation and magnetic maps in spiny lobsters. Nature 421:60–63PubMedCrossRefGoogle Scholar
  6. Dacke M., Nilsson DE, Warrant EJ, Blest AD, Land MF, O’Carroll DC (1999) Built-in polarizers form part of a compass organ in spiders. Nature 401:470–473CrossRefGoogle Scholar
  7. Dacke M, Nordström P, Sholtz CH (2003) Twilight orientation to polarised light in the crepuscular dung beetle Scarabaeus zambesianus. J Exp Biol 206:1535–1543PubMedCrossRefGoogle Scholar
  8. Doujak FE (1985) Can a shore crab see a star? J Exp Biol 116:385–393Google Scholar
  9. von Frisch K (1967) The dance language and orientation of bees. The Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  10. Fukushi T (2001) Homing in wood ants, Formica japonica: use of the skyline panorama. J Exp Biol 204:2063–2072PubMedGoogle Scholar
  11. Fukushi T, Wehner R (2004) Navigation in wood ants Formica japonica: context dependent use of landmarks. J Exp Biol 207:3431–3439PubMedCrossRefGoogle Scholar
  12. Henschel JR (1990) The biology of Leucorchestris arenicola (Areneae: Heteropodidae), a burrowing spider of the Namib Desert. In: Seely MK (ed) Namib ecology: 25 years of Namib research. Transvaal museum monograph no. 7. Transvaal Museum, Pretoria, pp 115–127Google Scholar
  13. Henschel JR (1994) Diet and foraging behaviour of huntsman spiders in the Namib dunes (Araneae: Heteropodidae). J Zool (Lond) 234:239–251CrossRefGoogle Scholar
  14. Henschel JR (2002) Long distance wandering and mating by the dancing white lady spider (Leucorchestris arenicola) (Araneae, Sparassidae) across Namib dunes. J Arachnol 30:321–330CrossRefGoogle Scholar
  15. Hill DE (1979) Orientation by jumping spiders of the genus Phidippus (Arenae: Salticidae). Behav Ecol Sociobiol 5:301–322CrossRefGoogle Scholar
  16. Laughlin S, Blest AD, Stowe S (1980) The sensitivity of receptors in the posterior median eye of the nocturnal spider, Dinopis. J Comp Physiol A 141:53–65CrossRefGoogle Scholar
  17. Mittelstaedt H (1985) Analytical cybernetics of spider navigation. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin Heidelberg New York, pp 298–316Google Scholar
  18. Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290PubMedCrossRefGoogle Scholar
  19. Müller M, Wehner R (1994) The hidden spiral: systematic search and path integration in desert ants, Cataglyphis fortis. J Comp Physiol A 175:525–530CrossRefGoogle Scholar
  20. Nørgaard T (2006) Nocturnal navigation in Leucorchestris arenicola (Araneae: Sparassidae). J Arachnol 33:533–540CrossRefGoogle Scholar
  21. Nørgaard T, Henschel JR, Wehner R (2003) Long-distance navigation in the wandering desert spider Leucorchestris arenicola: can the slope of the dune surface provide a compass cue? J Comp Physiol A 189:801–809CrossRefGoogle Scholar
  22. Nørgaard T, Henschel JR, Wehner R (2006a) The night-time temporal window of locomotor activity in the Namib Desert long-distance wandering spider, Leucorchestris arenicola. J Comp Physiol A 192:365–372CrossRefGoogle Scholar
  23. Nørgaard T, Henschel JR, Wehner R (2006b) Tracking the Namib Desert spider Leucorchestris arenicola—reading the story in the sand. Senckenb Biol 86:211–218Google Scholar
  24. Papke MD, Reichert SE, Schulz S (2001) An airborne female pheromone associated with male attraction and courtship in a desert spider. Anim Behav 61:877–886CrossRefGoogle Scholar
  25. Robinson MD, Seely MK (1980) Physical and biotic environments of the southern Namib dune ecosystem. J Arid Environ 3:183–203Google Scholar
  26. Rossel S, Wehner R (1986) Polarization vision in bees. Nature 323:128–131CrossRefGoogle Scholar
  27. Santschi (1911) Observations et remarques critiques sur le mécanisme de l’orientation chez les fourmis. Rev Suisse Zool 19:305–338Google Scholar
  28. Seyfarth EA, Hergenröder R, Ebbes H, Barth FG (1982) Ideothetic orientation of a wandering spider: compensation of detours and estimates of goal distance. Behav Ecol Sociobiol 11:139–148CrossRefGoogle Scholar
  29. Tongiorgi P (1969) Evidence of a moon orientation in the wolf spider Arctosa variana C. L. Koch (Araneae, Lycosidae). Bull Mus Nat Hist Natur Paris 41:243–249Google Scholar
  30. Vollrath F (1986) Gravity as an orientation guide during web-construction in the orb spider Araneus diadematus (Araneae, Araneidae). J Comp Physiol A 159:275–280CrossRefGoogle Scholar
  31. Warrant EJ (1999) Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vision Res 39:1611–1630PubMedCrossRefGoogle Scholar
  32. Warrant EJ (2004) Vision in the dimmest habitats on earth. J Comp Physiol A 190:765–789CrossRefGoogle Scholar
  33. Wehner R (1976) Polarized-light navigation by insects. Sci Am 235:106–115PubMedCrossRefGoogle Scholar
  34. Wehner R (1992) Arthropods. In: Papi F (ed) Animal homing. Chapman & Hall, London, pp 45–144Google Scholar
  35. Wehner R (1994) The polarization-vision project: championing organismic biology. Fortschr Zool 39:103–143Google Scholar
  36. Wehner R (1997) The ant’s celestial compass system: spectral and polarization channels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser Verlag, Basel, pp 145–185Google Scholar
  37. Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189:579–588CrossRefGoogle Scholar
  38. Wehner R, Duelli P (1971) The spatial orientation of desert ants, Cataglyphis bicolour, before sunrise and after sunset. Experientia 27:1364–1366CrossRefGoogle Scholar
  39. Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140PubMedGoogle Scholar
  40. Wehner R, Srinivasan MV (1981) Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J Comp Physiol A 142:315–338CrossRefGoogle Scholar
  41. Wehner R, Srinivasan MV (2003) Path integration in insects. In: Jeffery KJ (ed) The neurobiology of spatial behaviour. Oxford University Press, Oxford, pp 9–30Google Scholar
  42. Wehner R, Wehner S (1986) Path integration in desert ants. Approaching a long-standing puzzle in insect navigation. Monit Zool Ital 20:309–331Google Scholar
  43. Wehner R, Wehner S (1990) Insect navigation: use of maps or Ariadne’s thread? Ethol Ecol Evol 2:27–48Google Scholar
  44. Wehner R, Gallizzi K, Frei C, Vesely M (2002) Calibration processes in the desert ant navigation: vector courses and systematic search. J Comp Physiol A 188:683–693CrossRefGoogle Scholar
  45. Wehner R, Boyer M, Loertscher F, Sommer S, Menzi U (2006) Ant navigation: one-way routes rather than maps. Curr Biol 16:75–79PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Thomas Nørgaard
    • 1
  • Joh R. Henschel
    • 2
  • Rüdiger Wehner
    • 1
  1. 1.Department of ZoologyUniversity of ZurichZurichSwitzerland
  2. 2.Gobabeb Training and Research CentreWalvis BayNamibia

Personalised recommendations