Journal of Comparative Physiology A

, Volume 193, Issue 1, pp 21–34

Expression of the G-protein α-subunit gustducin in mammalian spermatozoa

  • Johanna Fehr
  • Dorke Meyer
  • Patricia Widmayer
  • Heike Claudia Borth
  • Frauke Ackermann
  • Beate Wilhelm
  • Thomas Gudermann
  • Ingrid Boekhoff
Original Paper

Abstract

Although chemotaxis has been proposed to guide sperm to egg throughout the animal kingdom, sperm attractants released from mammalian eggs have not been identified. Since the G protein subunit α-gustducin is accepted as a marker of chemosensitive cells, attempts were made to explore whether α-gustducin is also expressed in spermatozoa of mammals. Immunohistochemical approaches using an anti-α-gustducin-specific antibody revealed the most intense immunoreactivity in differentiating spermatids. Further evidence for the α-gustducin expression was obtained analyzing testicular and sperm-derived tissue preparations in western blot analyses. To elucidate whether α-gustducin is retained in mature spermatozoa, epididymal mouse and rat sperm were subjected to immunocytochemistry as well as immunogold electron microscopy. A specific staining was obtained within the circumference of the midpiece-localized mitochondria, on the axoneme and the outer dense fibers surrounding the microtubules of this region, whereas no labeling was detectable in the end piece regions. The analysis of ejaculated bovine and human sperm revealed a comparable segmental distribution pattern for α-gustducin. Although a possible function for α-gustducin has yet to be determined, the axonemal-associated localization within the midpiece and principal piece of different mammalian spermatozoa raises the possibility that this G protein α-subunit may process intracellular signals controlling sperm motility.

Keywords

α-Gustducin G protein Spermatozoa Signal transduction Motility 

Abbreviations

cAMP

3′,5′-Cyclic adenosine monophosphate

cGMP

Cyclic guanosine 5′-monophosphate

FITC

Fluorescein isothiocyanate

PDE

Phosphodiesterase

PLC

Phospholipase C

SCC

Solitary chemosensory cells

References

  1. Aigner A, Ray PE, Czubayko F, Wellstein A (2002) Immunolocalization of an FGF-binding protein reveals a widespread expression pattern during different stages of mouse embryo development. Histochem Cell Biol 117:1–11PubMedCrossRefGoogle Scholar
  2. Baxendale RW, Fraser LR (2003) Immunolocalization of multiple Galpha subunits in mammalian spermatozoa and additional evidence for Galphas. Mol Reprod Dev 65:104–113PubMedCrossRefGoogle Scholar
  3. Bohmer M, Van Q, Weyand I, Hagen V, Beyermann M, Matsumoto M, Hoshi M, Hildebrand E, Kaupp UB (2005) Ca2+ spikes in the flagellum control chemotactic behavior of sperm. Embo J 24:2741–2752PubMedCrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  5. Breer H (2003) Sense of smell: recognition and transduction of olfactory signals. Biochem Soc Trans 31:113–116PubMedCrossRefGoogle Scholar
  6. Caicedo A, Pereira E, Margolskee RF, Roper SD (2003) Role of the G-protein subunit alpha-gustducin in taste cell responses to bitter stimuli. J Neurosci 23:9947–9952PubMedGoogle Scholar
  7. Cooper TG (2005) Cytoplasmic droplets: the good, the bad or just confusing? Hum Reprod 20:9–11PubMedCrossRefGoogle Scholar
  8. Defer N, Marinx O, Poyard M, Lienard MO, Jegou B, Hanoune J (1998) The olfactory adenylyl cyclase type 3 is expressed in male germ cells. FEBS Lett 424:216–220PubMedCrossRefGoogle Scholar
  9. Eisenbach M (2004) Towards understanding the molecular mechanism of sperm chemotaxis. J Gen Physiol 124:105–108PubMedCrossRefGoogle Scholar
  10. Fabro G, Rovasio RA, Civalero S, Frenkel A, Caplan SR, Eisenbach M, Giojalas LC (2002) Chemotaxis of capacitated rabbit spermatozoa to follicular fluid revealed by a novel directionality-based assay. Biol Reprod 67:1565–1571PubMedCrossRefGoogle Scholar
  11. Finger TE, Bottger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL (2003) Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc Natl Acad Sci USA 100:8981–8986PubMedCrossRefGoogle Scholar
  12. Fraser LR, Adeoya-Osiguwa SA, Baxendale RW (2003) First messenger regulation of capacitation via G protein-coupled mechanisms: a tale of serendipity and discovery. Mol Hum Reprod 9:739–748PubMedCrossRefGoogle Scholar
  13. Fukuda N, Yomogida K, Okabe M, Touhara K (2004) Functional characterization of a mouse testicular olfactory receptor and its role in chemosensing and in regulation of sperm motility. J Cell Sci 117:5835–5845PubMedCrossRefGoogle Scholar
  14. Gautier-Courteille C, Salanova M, Conti M (1998) The olfactory adenylyl cyclase III is expressed in rat germ cells during spermiogenesis. Endocrinology 139:2588–2599PubMedCrossRefGoogle Scholar
  15. Goto T, Salpekar A, Monk M (2001) Expression of a testis-specific member of the olfactory receptor gene family in human primordial germ cells. Mol Hum Reprod 7:553–558PubMedCrossRefGoogle Scholar
  16. Gulbransen BD, Finger TE (2005) Solitary chemoreceptor cell proliferation in adult nasal epithelium. J Neurocytol 34:117–122PubMedCrossRefGoogle Scholar
  17. He W, Yasumatsu K, Varadarajan V, Yamada A, Lem J, Ninomiya Y, Margolskee RF, Damak S (2004) Umami taste responses are mediated by alpha-transducin and alpha-gustducin. J Neurosci 24:7674–7680PubMedCrossRefGoogle Scholar
  18. Heydecke D, Meyer D, Ackermann F, Wilhelm B, Gudermann T, Boekhoff I (2006) The multi PDZ domain protein MUPP1 as a putative scaffolding protein for organizing signaling complexes in the acrosome of mammalian spermatozoa. J Androl 27(3):390–404PubMedCrossRefGoogle Scholar
  19. Hofer D, Drenckhahn D (1998) Identification of the taste cell G-protein, alpha-gustducin, in brush cells of the rat pancreatic duct system. Histochem Cell Biol 110:303–309PubMedCrossRefGoogle Scholar
  20. Hofer D, Puschel B, Drenckhahn D (1996) Taste receptor-like cells in the rat gut identified by expression of alpha-gustducin. Proc Natl Acad Sci USA 93:6631–6634PubMedCrossRefGoogle Scholar
  21. Howes EA, Hurst SM, Jones R (2001) Actin and actin-binding proteins in bovine spermatozoa: potential role in membrane remodeling and intracellular signaling during epididymal maturation and the acrosome reaction. J Androl 22:62–72PubMedGoogle Scholar
  22. Huang L, Shanker YG, Dubauskaite J, Zheng JZ, Yan W, Rosenzweig S, Spielman AI, Max M, Margolskee RF (1999) Ggamma13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat Neurosci 2:1055–1062PubMedCrossRefGoogle Scholar
  23. Inaba K (2003) Molecular architecture of the sperm flagella: molecules for motility and signaling. Zool Sci 20:1043–1056PubMedCrossRefGoogle Scholar
  24. Kaupp UB, Solzin J, Hildebrand E, Brown JE, Helbig A, Hagen V, Beyermann M, Pampaloni F, Weyand I (2003) The signal flow and motor response controling chemotaxis of sea urchin sperm. Nat Cell Biol 5:109–117PubMedCrossRefGoogle Scholar
  25. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  26. Livera G, Xie F, Garcia MA, Jaiswal B, Chen J, Law E, Storm DR, Conti M (2005) Inactivation of the mouse adenylyl cyclase 3 gene disrupts male fertility and spermatozoon function. Mol Endocrinol 19:1277–1290PubMedCrossRefGoogle Scholar
  27. Margolskee RF (2002) Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem 277:1–4PubMedCrossRefGoogle Scholar
  28. McLaughlin SK, McKinnon PJ, Margolskee RF (1992) Gustducin is a taste-cell-specific G protein closely related to the transducins. Nature 357:563–569PubMedCrossRefGoogle Scholar
  29. Meggiolaro D, Porcelli F, Scanziani E, Consiglio AL, Carnevali A, Ferrandi B (2003) ILA 147 immunoreactivity of the bull spermatozoa membrane during epididymal maturation. Acta Histochem 105:231–238PubMedCrossRefGoogle Scholar
  30. Merigo F, Benati D, Tizzano M, Osculati F, Sbarbati A (2005) alpha-Gustducin immunoreactivity in the airways. Cell Tissue Res 319:211–219PubMedCrossRefGoogle Scholar
  31. Milligan G, Kostenis E (2006) Heterotrimeric G-proteins: a short history. Br J Pharmacol 147(Suppl 1):S46–S55PubMedCrossRefGoogle Scholar
  32. Munuce MJ, Caille AM, Botti G, Berta CL (2004) Modulation of human sperm function by follicular fluid. Andrologia 36:395–401PubMedCrossRefGoogle Scholar
  33. Neesen J, Hartwich T, Brandhorst G, Aumuller G, Glaser B, Burfeind P, Mendoza-Lujambio I (2002) Tep22, a novel testicular expressed gene, is involved in the biogenesis of the acrosome and the midpiece of the sperm tail. Biochem Biophys Res Commun 297:737–748PubMedCrossRefGoogle Scholar
  34. Oliveira RG, Tomasi L, Rovasio RA, Giojalas LC (1999) Increased velocity and induction of chemotactic response in mouse spermatozoa by follicular and oviductal fluids. J Reprod Fertil 115:23–27PubMedCrossRefGoogle Scholar
  35. Parmentier M, Libert F, Schurmans S, Schiffmann S, Lefort A, Eggerickx D, Ledent C, Mollereau C, Gerard C, Perret J et al (1992) Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature 355:453–455PubMedCrossRefGoogle Scholar
  36. Peterson JJ, Orisme W, Fellows J, McDowell JH, Shelamer CL, Dugger DR, Smith WC (2005) A role for cytoskeletal elements in the light-driven translocation of proteins in rod photoreceptors. Invest Ophthalmol Vis Sci 46:3988–3998PubMedCrossRefGoogle Scholar
  37. Ralt D, Manor M, Cohen-Dayag A, Tur-Kaspa I, Ben-Shlomo I, Makler A, Yuli I, Dor J, Blumberg S, Mashiach S et al (1994) Chemotaxis and chemokinesis of human spermatozoa to follicular factors. Biol Reprod 50:774–785PubMedCrossRefGoogle Scholar
  38. Rasenick MM, Donati RJ, Popova JS, Yu JZ (2004) Tubulin as a regulator of G-protein signaling. Methods Enzymol 390:389–403PubMedCrossRefGoogle Scholar
  39. Rössler P, Boekhoff I, Tareilus E, Beck S, Breer H, Freitag J (2000) G protein betagamma complexes in circumvallate taste cells involved in bitter transduction. Chem Senses 25:413–21PubMedCrossRefGoogle Scholar
  40. Rössler P, Kroner C, Freitag J, Noe J, Breer H (1998) Identification of a phospholipase C beta subtype in rat taste cells. Eur J Cell Biol 77:253–261PubMedGoogle Scholar
  41. Ruiz-Avila L, Ming D, Margolskee RF (2000) An In vitro assay useful to determine the potency of several bitter compounds. Chem Senses 25:361–368PubMedCrossRefGoogle Scholar
  42. Sbarbati A, Crescimanno C, Bernardi P, Osculati F (1999) Alpha-gustducin-immunoreactive solitary chemosensory cells in the developing chemoreceptorial epithelium of the rat vallate papilla. Chem Senses 24:469–472PubMedCrossRefGoogle Scholar
  43. Sbarbati A, Osculati F (2003) Solitary chemosensory cells in mammals? Cells Tissues Organs 175:51–55PubMedCrossRefGoogle Scholar
  44. Scholey JM (2003) Intraflagellar transport. Annu Rev Cell Dev Biol 19:423–443PubMedCrossRefGoogle Scholar
  45. Shepherd GM (1991) Sensory transduction: entering the mainstream of membrane signaling. Cell 67:845–851PubMedCrossRefGoogle Scholar
  46. Shi YB, Liang VC (1994) Cloning and characterization of the ribosomal protein L8 gene from Xenopus laevis. Biochim Biophys Acta 1217:227–228PubMedGoogle Scholar
  47. Spehr M, Hatt H (2005) A potential role of odorant receptor agonists and antagonists in the treatment of infertility and contraception. Curr Opin Investig Drugs 6:364–368PubMedGoogle Scholar
  48. Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, Hatt H (2003) Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299:2054–2058PubMedCrossRefGoogle Scholar
  49. Spehr M, Schwane K, Riffell JA, Barbour J, Zimmer RK, Neuhaus EM, Hatt H (2004) Particulate adenylate cyclase plays a key role in human sperm olfactory receptor-mediated chemotaxis. J Biol Chem 279:40194–40203PubMedCrossRefGoogle Scholar
  50. Sun F, Bahat A, Gakamsky A, Girsh E, Katz N, Giojalas LC, Tur-Kaspa I, Eisenbach M (2005) Human sperm chemotaxis: both the oocyte and its surrounding cumulus cells secrete sperm chemoattractants. Hum Reprod 20:761–767PubMedCrossRefGoogle Scholar
  51. Takesono A, Cismowski MJ, Ribas C, Bernard M, Chung P, Hazard S III, Duzic E, Lanier SM (1999) Receptor-independent activators of heterotrimeric G-protein signaling pathways. J Biol Chem 274:33202–33205PubMedCrossRefGoogle Scholar
  52. Turner RM (2003) Tales from the tail: what do we really know about sperm motility? J Androl 24:790–803PubMedGoogle Scholar
  53. Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M (1993) Olfactory receptors are displayed on dog mature sperm cells. J Cell Biol 123:1441–1452PubMedCrossRefGoogle Scholar
  54. Vanderhaeghen P, Schurmans S, Vassart G, Parmentier M (1997) Specific repertoire of olfactory receptor genes in the male germ cells of several mammalian species. Genomics 39:239–246PubMedCrossRefGoogle Scholar
  55. von Buchholtz L, Elischer A, Tareilus E, Gouka R, Kaiser C, Breer H, Conzelmann S (2004) RGS21 is a novel regulator of G protein signalling selectively expressed in subpopulations of taste bud cells. Eur J Neurosci 19:1535–1544CrossRefGoogle Scholar
  56. Walensky LD, Roskams AJ, Lefkowitz RJ, Snyder SH, Ronnett GV (1995) Odorant receptors and desensitization proteins colocalize in mammalian sperm. Mol Med 1:130–141PubMedGoogle Scholar
  57. Wennemuth G, Westenbroek RE, Xu T, Hille B, Babcock DF (2000) CaV2.2 and CaV2.3 (N- and R-type) Ca2+ channels in depolarization-evoked entry of Ca2+ into mouse sperm. J Biol Chem 275:21210–21217PubMedCrossRefGoogle Scholar
  58. Weyand I, Godde M, Frings S, Weiner J, Muller F, Altenhofen W, Hatt H, Kaupp UB (1994) Cloning and functional expression of a cyclic-nucleotide-gated channel from mammalian sperm. Nature 368:859–863PubMedCrossRefGoogle Scholar
  59. Wiesner B, Weiner J, Middendorff R, Hagen V, Kaupp UB, Weyand I (1998) Cyclic nucleotide-gated channels on the flagellum control Ca2+ entry into sperm. J Cell Biol 142:473–484PubMedCrossRefGoogle Scholar
  60. Wong GT, Gannon KS, Margolskee RF (1996) Transduction of bitter and sweet taste by gustducin. Nature 381:796–800PubMedCrossRefGoogle Scholar
  61. Zancanaro C, Caretta CM, Merigo F, Cavaggioni A, Osculati F (1999) alpha-gustducin expression in the vomeronasal organ of the mouse. Eur J Neurosci 11:4473–4475PubMedCrossRefGoogle Scholar
  62. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112:293–301PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Johanna Fehr
    • 1
  • Dorke Meyer
    • 1
  • Patricia Widmayer
    • 2
  • Heike Claudia Borth
    • 1
  • Frauke Ackermann
    • 1
  • Beate Wilhelm
    • 3
  • Thomas Gudermann
    • 1
  • Ingrid Boekhoff
    • 1
  1. 1.Department of Pharmacology and ToxicologyPhilipps-University MarburgMarburgGermany
  2. 2.Institute of PhysiologyUniversity of HohenheimStuttgartGermany
  3. 3.Department of Anatomy and Cell BiologyPhilipps-University MarburgMarburgGermany

Personalised recommendations