Advertisement

Journal of Comparative Physiology A

, Volume 193, Issue 1, pp 1–11 | Cite as

GABA and glutamate specifically induce contractions in the sponge Tethya wilhelma

  • Kornelia Ellwanger
  • Andre Eich
  • Michael Nickel
Original Paper

Abstract

Sponges (Porifera) are nerve- and muscleless. Nevertheless, they react to external stimuli in a coordinated way, by body contraction, oscule closure or stopping pumping activity. The underlying mechanisms are still unknown, but evidence has been found for chemical messenger-based systems. We used the sponge Tethya wilhelma to test the effect of γ-aminobutyric acid (GABA) and glutamate (l-Glu) on its contraction behaviour. Minimal activating concentrations were found to be 0.5 μM (GABA) and 50 μM (l-Glu), respectively. Taking maximum relative contraction speed and minimal relative projected body area as a measure of the sponge’s response, a comparison of the dose–response curves indicated a higher sensitivity of the contractile tissue for GABA than for l-Glu. The concentrations eliciting the same contractile response differ by about 100-fold more than the entire concentration range tested. In addition, desensitising effects and spasm-like reactions were observed. Presumably, a GABA/l-Glu metabotropic receptor-based system is involved in the regulation of contraction in T. wilhelma. We discuss a coordination system for sponges based on hypothetical chemical messenger pathways.

Keywords

Tethya wilhelma (Porifera) Induced contraction Coordination γ-Aminobutyric acid l-Glutamate 

Abbreviations

ANOVA

Analysis of variance

Ar max

Maximum relative projected area

Ar min

Minimal relative projected area

Ar

Relative projected area

ΔAr

Change of relative projected area

cs

Substance concentration

GABA

γ-Aminobutyric acid

GABAAR, GABACR

Ionotropic GABA receptors

GABABR

Metabotropic GABA receptor

iGluR

Ionotropic l-Glu receptors

l-Glu

l-Glutamic acid

LSD

Least significant difference

mGluR

Metabotropic l-Glu receptor

PC

Contracted phase

PE

Expanded phase

v

Contraction speed

vCmax

Maximum relative contraction speed

vEmax

Maximum relative speed of expansion

vimax

Maximum induced relative contraction speed

ΔpH

pH-shift

Notes

Acknowledgments

We are grateful to Hans-Dieter Görtz and Franz Brümmer for their support of our research, Isabel Koch and Kai-Uwe Genzel for providing and maintaining sponges in the zoological Garden Wilhelma, Wolfgang Hauber for discussion on experimental design, Birgit Nickel and Markus Götz for discussion of results, Isabel Heim and Carsten Wolf for technical assistance with the aquarium. Our work was partly supported by the German Federal Ministry of Education and Research (BMBF) through the project Center of Excellence BIOTECmarin (F 0345D), by the Ministry of Science, Research and the Arts of the State of Baden-Württemberg and the University of Stuttgart. The experiments conducted herein comply with the current laws of Germany where they were performed.

Supplementary material

359_2006_165_MOESM1_ESM.mov (2 mb)
Supplementary material

References

  1. Aristotle (1498) De natura animalium libri novem; de partibus animalium libri quatuor; de generatione animalium libri quinqui. Electronic facsimile: Bibliotheque National de France: http://www.gallica.bnf.fr/Catalogue/NoticesInd/FRBNF37256929.html, Paris, pp 89
  2. Bagby RM (1970) The fine structure of pinacocytes in the marine sponge Microciona prolifera. Z Zellforsch Mikroskop Anat 105:579–594CrossRefGoogle Scholar
  3. Bond C (1992) Continuous cell movements rearrange anatomical structures in intact sponges. J Exp Zool 263:284–302PubMedCrossRefGoogle Scholar
  4. Bond C, Harris AK (1988) Locomotion of sponges and its physical mechanism. J Exp Zool 246:271–284PubMedCrossRefGoogle Scholar
  5. Bouche N, Lacombe B, Fromm H (2003) GABA signaling: a conserved and ubiquitous mechanism. Trends Cell Biol 13:607–610PubMedCrossRefGoogle Scholar
  6. Chebib M, Johnston GAR (1999) The ‘ABC’ of GABA receptors: a brief review. Clin Exp Pharmacol Physiol 26:937–940PubMedCrossRefGoogle Scholar
  7. Chiu J, DeSalle R, Lam HM, Meisel L, Coruzzi G (1999) Molecular evolution of glutamate receptors: a primitive signalling mechanism that existed before plants and animals diverged. Mol Biol Evol 16:826–838PubMedGoogle Scholar
  8. Davenport R (2002) Glutamate receptors in plants. Ann Bot 90:549–557PubMedCrossRefGoogle Scholar
  9. Ellwanger K, Nickel M (2006) Neuroactive substances specifically modulate rhythmic body contractions in the nerveless metazoon Tethya wilhelma (Demospongiae, Porifera). Front Zool 3:7PubMedCrossRefGoogle Scholar
  10. Emson RH (1966) The reactions of the sponge Cliona celata to applied stimuli. Comp Biochem Physiol 18:805–827CrossRefGoogle Scholar
  11. Fagg GE, Foster AC (1983) Amino acid neurotransmitters and their pathways in the mammalian central nervous system. Neuroscience 9:701–719PubMedCrossRefGoogle Scholar
  12. Fishelson L (1981) Observations on the moving colonies of the genus Tethya (Demospongia, Porifera): 1. behavior and cytology. Zoomorphology 98:89–100CrossRefGoogle Scholar
  13. Fitch R (2005) WinSTAT—the statistics add-in for Microsoft Excel release 2005.1, Staufen, GermanyGoogle Scholar
  14. Ito I, Watanabe S, Kimura T, Kirino Y, Ito E (2003) Distributions of gamma-aminobutyric acid immunoreactive and acetylcholinesterase-containing cells in the primary olfactory system in the terrestrial slug Limax marginatus. Zoolog Sci 20:1337–1346PubMedCrossRefGoogle Scholar
  15. Jones WC (1962) Is there a nervous system in sponges? Biol Rev 37:1–50PubMedCrossRefGoogle Scholar
  16. Kilian EF (1967) Ortsveränderungen von Süßwasserschwämmen unter dem Einfluß von Licht. Verh Dtsch Zool Ges 31(Suppl):395–401Google Scholar
  17. Lentz TL (1968) Primitive nervous systems. Yale University Press, New HavenGoogle Scholar
  18. Leys SP, Mackie GO (1997) Electrical recording from a glass sponge. Nature 387:29–30CrossRefGoogle Scholar
  19. Lieberkühn N (1859) Neue Beiträge zur Anatomie der Spongien. Arch Anat Physiol:353–358, 515–529Google Scholar
  20. Mackie GO (1979) Is there a conduction system in sponges? In: Lévi C, Boury-Esnault N (eds) Biologie des Spongiaires. Editions du C.N.R.S., vol 291. C.N.R.S., Paris, pp 145–152Google Scholar
  21. Mackie GO (1990) The elementary nervous system revisited. Am Zool 30:907–920Google Scholar
  22. Madson P (2003) Digital camera remote shutter and digital camera time trigger. http://www.digital-camera.dk/
  23. McNair GT (1923) Motor reactions of the fresh-water sponge Ephydatia fluviatilis. Biol Bull 44:153–166CrossRefGoogle Scholar
  24. Mezler M, Muller T, Raming K (2001) Cloning and functional expression of GABAB receptors from Drosophila. Eur J Neurosci 13:477–486PubMedCrossRefGoogle Scholar
  25. Nickel M (2001) Cell biology and biotechnology of marine invertebrates—Sponges (Porifera) as model organisms. Arb Mitteil Biol Inst Uni Stuttgart 32:1–157Google Scholar
  26. Nickel M (2004) Kinetics and rhythm of body contractions in the sponge Tethya wilhelma (Porifera: Demospongiae). J Exp Biol 207:4515–4524PubMedCrossRefGoogle Scholar
  27. Nickel M (2006) Like a ‘rolling stone’: quantitative analysis of the body movement and skeletal dynamics of the sponge Tethya wilhelma. J Exp Biol 209:2839–2846PubMedCrossRefGoogle Scholar
  28. Nickel M, Brümmer F (2004) Body extension types of Tethya wilhelma: cellular organisation and their function in movement. Boll Mus Ist Biol Univ Genova 68:483–489Google Scholar
  29. Nickel M, Leininger S, Proll G, Brümmer F (2001) Comparative studies on two potential methods for the biotechnological production of sponge biomass. J Biotechnol 92:169–178PubMedCrossRefGoogle Scholar
  30. Nickel M, Vitello M, Brümmer F (2002) Dynamics and cellular movements in the locomotion of the sponge Tethya wilhelma. Integr Comp Biol 42:1285Google Scholar
  31. Nickel M, Donath T, Schweikert M, Beckmann F (2006) Functional morphology of Tethya (Porifera): 1. quantitative 3D-analysis of T. wilhelma by synchrotron radiation based x-ray microtomography. Zoomorphol 1–15 (online first)Google Scholar
  32. Panek I, Torkkeli PH (2005) Inhibitory glutamate receptors in spider peripheral mechanosensory neurons. Eur J Neurosci 22:636–646PubMedCrossRefGoogle Scholar
  33. Panek I, Meisner S, Torkkeli PH (2003) Distribution and function of GABAB receptors in spider peripheral mechanosensilla. J Neurophysiol 90:2571–2580PubMedCrossRefGoogle Scholar
  34. Pantin CFA (1952) The elementory nervous system. Proc R Soc Lond B Biol Sci 140:147–168PubMedCrossRefGoogle Scholar
  35. Parker GH (1919) The elementory nervous system. Lippincot, PhiladelphiaGoogle Scholar
  36. Pavans de Ceccatty M (1974) Coordination in sponges—the foundations of integration. Am Zool 14:895–903Google Scholar
  37. Pavans de Ceccatty M (1979) Cell correlations and integrations in sponges. Biologie des Spongiaires 291:123–135Google Scholar
  38. Pavans de Ceccatty M (1986) Cytoskeletal organization and tissue patterns of epithelia in the sponge Ephydatia mülleri. J Morphol 189:45–66CrossRefGoogle Scholar
  39. Perovic S, Krasko A, Prokic I, Mueller IM, Mueller WEG (1999) Origin of neuronal-like receptors in Metazoa: cloning of a metabotropic glutamate/GABA-like receptor from the marine sponge Geodia cydonium. Cell Tissue Res 296:395–404PubMedCrossRefGoogle Scholar
  40. Ramoino P, Fronte P, Beltrame F, Diasporo A, Fato M, Raiteri L, Stigliani S, Usai C (2003) Swimming behaviour regulation by GABAB receptors in Paramecium. Exp Cell Res 291:398–405PubMedCrossRefGoogle Scholar
  41. Ramoino P, Usai C, Beltrame F, Fato M, Gallus L, Tagliafierro G, Magrassi R, Diaspro A (2005) GABAB receptor intracellular trafficking after internalization in Paramecium. Microsc Res Tech 68:290–295PubMedCrossRefGoogle Scholar
  42. Rasband WS (1997–2005) ImageJ. National Institutes of Health, Bethesda, Maryland, USA, http://www.rsb.info.nih.gov/ij/
  43. Reiswig HM (1971) In-situ pumping activities of tropical Demospongiae. Mar Biol 9:38–50CrossRefGoogle Scholar
  44. Richmond JE, Murphy AD, Lukowiak K, Bulloch AGM (1994) GABA regulates the buccal motor output of Helisoma by two pharmacologically distinct actions. J Comp Physiol A 174:593–600CrossRefGoogle Scholar
  45. Sarà M, Sarà A, Nickel M, Brümmer F (2001) Three new species of Tethya (Porifera: Demospongiae) from German aquaria. Stuttgarter Beitr Naturk Ser A 631:1–15Google Scholar
  46. Schmidt O (1866) Zweites Supplement der Spongien des Adriatischen Meeres enthaltend die Vergleichung der Adriatischen und Britischen Spongiengattungen. Verlag von Wilhelm Engelmann, LeipzigGoogle Scholar
  47. Schuske K, Beg AA, Jorgensen EM (2004) The GABA nervous system in C. elegans. Trends Neurosci 27:407–414PubMedCrossRefGoogle Scholar
  48. von Bohlen und Halbach O, Dermietzel R (2002) Neurotransmitters and neuromodulators. Wiley-VCH, WeinheimGoogle Scholar
  49. Weissenfels N (1990) Condensation rhythm of fresh-water sponges (Spongillidae, Porifera). Eur J Cell Biol 53:373–383PubMedGoogle Scholar
  50. Weyrer S, Rutzler K, Rieger R (1999) Serotonin in Porifera? Evidence from developing Tedania ignis, the Caribbean fire sponge (Demospongiae). Mem Queensland Mus 44:659–665Google Scholar
  51. Wilson HV (1910) A study of some epitheloid membranes in monaxonid sponges. J Exp Zool 9:536–571Google Scholar
  52. Xue H (1998) Identification of major phylogenetic branches of inhibitory ligand-gated channel receptors. J Mol Evol 47:323–333PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Kornelia Ellwanger
    • 1
  • Andre Eich
    • 1
  • Michael Nickel
    • 1
  1. 1.Department of Zoology, Biological InstituteUniversity of StuttgartStuttgartGermany

Personalised recommendations