Journal of Comparative Physiology A

, Volume 192, Issue 12, pp 1313–1326

The evolution of stereopsis and the Wulst in caprimulgiform birds: a comparative analysis

Original Paper

Abstract

Owls possess stereopsis (i.e., the ability to perceive depth from retinal disparity cues), but its distribution amongst other birds has remained largely unexplored. Here, we present data on species variation in brain and telencephalon size and features of the Wulst, the neuroanatomical substrate that subserves stereopsis, in a putative sister-group to owls, the order Caprimulgiformes. The caprimulgiforms we examined included nightjars (Caprimulgidae), owlet-nightjars (Aegothelidae), potoos (Nyctibiidae), frogmouths (Podargidae) and the Oilbird (Steatornithidae). The owlet-nightjars and frogmouths shared almost identical relative brain, telencephalic and Wulst volumes as well as overall brain morphology and Wulst morphology with owls. Specifically, the owls, frogmouths and owlet-nightjars possess relatively large brains and telencephalic and Wulst volumes, had a characteristic brain shape and displayed prominent laminae in the Wulst. In contrast, potoos and nightjars both had relatively small brains and telencephala, and Wulst volumes that are typical for similarly sized birds from other orders. The Oilbird had a large brain, telencephalon and Wulst, although these measures were not quite as large as those of the owls. This gradation of owl-like versus nightjar-like brains within caprimulgiforms has significant implications for understanding the evolution of stereopsis and the Wulst both within the order and birds in general.

Keywords

Wulst Caprimulgiformes Evolution Stereopsis Strigiformes 

References

  1. Alma S, Bee de Speroni N (1992) Indices cerebrales y composicion cuantitativa encefalica en Athene cunicularia y Tyto alba (Strigiformes: Strigidae y Tytonidae). Facena 9:19–37Google Scholar
  2. Boire D (1989) Comparaison quantitative de l’encephale de ses grades subdivisions et de relais visuals, trijumaux et acoustiques chez 28 especes. PhD Thesis, Universite de MontrealGoogle Scholar
  3. Carezzano FJ, Bee de Speroni N (1995) Composicion volumetrica encefalica e indices cerebrales en tres aves de ambiente acuatico (Ardeidae, Podicipedidae, Rallidae). Facena 11:75–83Google Scholar
  4. Christidis L, Schodde R, Shaw DD, Maynes SF (1991) Relationships among the Australo-Papuan parrots, lorikeets and cockatoos (Aves: Psittaciformes). Condor 93:302–317Google Scholar
  5. Cleere N (1998) Nightjars: a guide to the nightjars, nighthawks, and their relatives. Yale University Press, New HavenGoogle Scholar
  6. Cracraft J, Barker FK, Braun M, Harshman J, Dyke GJ, Feinstein J, Stanley S, Cibois A, Schikler P, Beresford P, Garcia-Moreno J, Sorenson MD, Yuri T, Mindell DP (2004) Phylogenetic relationships among modern birds (Neornithes). In: Cracraft J, Donoghue MJ (eds) Assembling the tree of life. Oxford University Press, New York pp 468–489Google Scholar
  7. Deacon TW (1990) Fallacies of progression in theories of brain-size evolution. Int J Primatol 11:193–236CrossRefGoogle Scholar
  8. Deaner RO, Nunn CL, van Schaik CP (2000) Comparative tests of primate cognition: different scaling methods produce different results. Brain Behav Evol 55:44–52PubMedCrossRefGoogle Scholar
  9. del Hoyo J, Elliott A, Sargatal J (1999) Handbook of the birds of the world, vol 5. Barn owls to hummingbirds. Lynx Edicions, BarcelonaGoogle Scholar
  10. Denton CJ (1981) Topography of the hyperstriatal visual projection area in the young domestic chicken. Exp Neurol 74:482–498PubMedCrossRefGoogle Scholar
  11. Dimcheff DE. Drovetski SV, Mindell DP (2002) Phylogeny of Tetraoninae and other galliform birds using mitochondrial 12S and ND2 genes. Mol Phylogenet Evol 24:203–215CrossRefGoogle Scholar
  12. Ebinger P (1995) Domestication and plasticity of brain organization in mallards (Anas platyrhynchos). Brain Behav Evol 45:286–300PubMedGoogle Scholar
  13. Ebinger P, Löhmer R (1984) Comparative quantitative investigations on brains of rock doves, domestic and urban pigeons (Columba L. livia). Z Zool Syst Evol Forsch 22:136–145CrossRefGoogle Scholar
  14. Ebinger P, Löhmer R (1987) A volumetric comparison of brains between greylag geese (Anser anser L.) and domestic geese. J Hirnforsch 3:291–299Google Scholar
  15. Ebinger P, Röhrs M (1995) Volumetric analysis of brain structures, especially of the visual system in wild and domestic turkeys (Meleagris gallopavo). J Brain Res 36:219–228Google Scholar
  16. Fernandez P, Carezzano F, Bee de Speroni N (1997) Análisis cuantitativo encefálico e índices cerebrales en Aratinga acuticaudata y Myiopsitta monachus de Argentina (Aves: Psittacidae). Rev Chil Hist Nat 70:269–275Google Scholar
  17. Fox R, Lehmkuhle SW, Bush RC (1977) Stereopsis in the falcon. Science 197:79–81PubMedCrossRefGoogle Scholar
  18. Funke K (1989) Somatosensory areas in the telencephalon of the pigeon. I. Response characteristics. Exp Brain Res 76:603–619PubMedCrossRefGoogle Scholar
  19. Garland T Jr, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18–32CrossRefGoogle Scholar
  20. Garland T Jr, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155:346–364CrossRefGoogle Scholar
  21. Higgins PJ (1999) Handbook of Australian, New Zealand and Antarctic birds, vol 4: parrots to dollarbird. Oxford University Press, MelbourneGoogle Scholar
  22. Iwaniuk AN, Dean KM, Nelson JE (2005) Interspecific allometry and the brain and brain regions in parrots (Psittaciformes): comparisons with other birds and primates. Brain Behav Evol 65:40–59PubMedCrossRefGoogle Scholar
  23. Iwaniuk AN, Hurd PL (2005) The evolution of cerebrotypes in birds. Brain Behav Evol 65:215–230PubMedCrossRefGoogle Scholar
  24. Iwaniuk AN, Hurd PL, Wylie DRW (2006) Comparative morphology of the avian cerebellum: I. Degree of foliation. Brain Behav Evol 68:45–62PubMedCrossRefGoogle Scholar
  25. Iwaniuk AN, Nelson JE (2003) Developmental differences are correlated with relative brain size in birds: a comparative analysis. Can J Zool 81:1913–1928CrossRefGoogle Scholar
  26. Iwaniuk AN, Nelson JE (2002) Can endocranial volume be used as an estimate of brain size in birds? Can J Zool 80:16–23CrossRefGoogle Scholar
  27. Karten HJ, Hodos W, Nauta WJH, Revzin AM (1973) Neural connections of the ‘visual Wulst’ of the avian telencephalon: Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). J Comp Neurol 150:253–278PubMedCrossRefGoogle Scholar
  28. LaChica EA, Beck PD, Casagrande VA (1993) Intrinsic connections of layer III of striate cortex in squirrel monkey and bush baby: correlations with patterns of cytochrome oxidase. J Comp Neurol 329:163–187PubMedCrossRefGoogle Scholar
  29. Livezey BC, Zusi RL (2001) Higher-order phylogenetics of modern Aves based on comparative anatomy. Neth J Zool 51:179–205CrossRefGoogle Scholar
  30. Manger PR, Elston GN, Pettigrew JD (2002) Multiple maps and activity-dependent representational plasticity in the anterior Wulst of the adult barn owl (Tyto alba). Eur J Neurosci 16:743–750PubMedCrossRefGoogle Scholar
  31. Mariaux J, Braun MJ (1996) A molecular phylogenetic survey of the nightjars and allies (Caprimulgiformes) with special emphasis on the potoos (Nyctibiidae). Mol Phylogenet Evol 6:228–244PubMedCrossRefGoogle Scholar
  32. Martin GR (1984) The visual fields of the tawny owl, Strix aluco L. Vision Res 24:1739–1751PubMedCrossRefGoogle Scholar
  33. Martin GR, Coetzee HC (2004) Visual fields in hornbills: precision-grasping and sunshades. Ibis 146:18–26CrossRefGoogle Scholar
  34. Martin GR, Katzir G (1999) Visual fields in short-toed eagles, Circaetus gallicus (Accipitridae), and the function of binocularity in birds. Brain Behav Evol 53:55–66PubMedCrossRefGoogle Scholar
  35. Martin G, Rojas LM, Figueroa YMR, McNeil R (2004a) Binocular vision and nocturnal activity in oilbirds (Steatornis caripensis) and pauraques (Nyctidromus albicollis): Caprimulgiformes. Orn Neo 15:233–242Google Scholar
  36. Martin G, Rojas LM, Ramirez Y, McNeil R (2004b) The eyes of oilbirds (Steatornis caripensis): pushing at the limits of sensitivity. Naturwiss 91:26–29CrossRefGoogle Scholar
  37. Mayr G (2002) Osteological evidence for paraphyly of the avian order Caprimulgiformes (nightjars and allies). J Ornithol 143:82–97CrossRefGoogle Scholar
  38. McFadden SA, Wild JM (1986) Binocular depth perception in the pigeon. J Exp Anal Behav 45:149–160PubMedCrossRefGoogle Scholar
  39. Medina L, Reiner A (2000) Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci 23:1–12PubMedCrossRefGoogle Scholar
  40. Nieder A, Wagner H (2001) Encoding of both vertical and horizontal disparity in random-dot stereograms by Wulst neurons of awake barn owls. Vis Neurosci 18:541–547PubMedCrossRefGoogle Scholar
  41. Nieder A, Wagner H (2000) Horizontal-disparity tuning of neurons in the visual forebrain of the behaving barn owl. J Neurophysiol 83:2967–2979PubMedGoogle Scholar
  42. Perisic M, Mihailovic J, Cuenod M (1971) Electrophysiology of contralateral and ipsilateral visual projections to the Wulst in pigeon (Columba livia). Int J Neurosci 2:7–14PubMedCrossRefGoogle Scholar
  43. Pettigrew JD (1978) Comparison of the retinotopic organization of the visual wulst in nocturnal and diurnal raptors, with a note on the evolution of frontal vision. In: Cool SJ, Smith EL (eds) Frontiers in visual science. Springer, Berlin Heidelberg New York, pp 328–335Google Scholar
  44. Pettigrew JD (1979) Binocular visual processing in the owl’s telencephalon. Proc R Soc Lond B 204:435–454PubMedCrossRefGoogle Scholar
  45. Pettigrew JD (1986) The evolution of binocular vision. In: Pettigrew JD, Sanderson KJ, Levick WR (eds) Visual neuroscience. Cambridge University Press, Cambridge, pp 208–222Google Scholar
  46. Pettigrew JD, Frost BJ (1985) A tactile fovea in the Scolopacidae? Brain Behav Evol 26:95–105Google Scholar
  47. Pettigrew JD, Konishi M (1976) Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba). Science 193:675–678PubMedCrossRefGoogle Scholar
  48. Pettigrew JD, Konishi M (1984) Some observations on the visual system of the oilbird, Steatornis caripensis. Nat Geo Soc Res Rep 16:439–450Google Scholar
  49. Pirlot P, Bee de Speroni N (1987) Encephalization and brain composition in South American rodents (Caviidae, Cricetidae, Dasyproctidae). Mammalia 51:305–320CrossRefGoogle Scholar
  50. Porciatti V, Fontanesi G, Raffaelli A, Bagnoli P (1990) Binocularity in the little owl, Athena noctua II. Properties of visually evoked potentials from the Wulst in response to monocular and binocular stimulation with sine wave gratings. Brain Behav Evol 35:40–48PubMedGoogle Scholar
  51. Preuss TM (2001) The discovery of cerebral diversity: an unwelcome scientific revolution. In: Falk D, Gibson K (eds) Evolutionary anatomy of the primate cerebral cortex. A feitschrift for Harry Jerison. Cambridge University Press, Cambridge, pp 138–164Google Scholar
  52. Rehkämper G, Frahm HD, Zilles K (1991) Quantitative development of brain and brain structures in birds (Galliformes and Passeriformes) compared to that in mammals (insectivores and primates). Brain Behav Evol 37:125–143PubMedGoogle Scholar
  53. Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Güntürkun O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED (2004) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473:377–414PubMedCrossRefGoogle Scholar
  54. Reiner A, Yamamoto K, Karten HJ (2005) Organization and evolution of the avian forebrain. Anat Rec 287A:1080–1102CrossRefGoogle Scholar
  55. Sheldon FH, Jones CE, McCracken KG (2000) Relative patterns and rates of evolution in heron nuclear and mitochondrial DNA. Mol Biol Evol 17:437–450PubMedGoogle Scholar
  56. Sherry DF, Vaccarino AL, Buckenham K, Herz HS (1989) The hippocampal complex of food-storing birds. Brain Behav Evol 34:308–317PubMedGoogle Scholar
  57. Shimizu T, Karten HJ 1993 The avian visual system and the evolution of the neocortex. In: Zeigler HP, Bischof HJ (eds) Vision, brain and behavior in birds. MIT Press, Cambridge, pp 103–114Google Scholar
  58. Shimizu T, Cox K, Karten HJ (1995) Intratelencephalic projections of the visual wulst in pigeons (Columba livia). J Comp Neurol 359:551–572PubMedCrossRefGoogle Scholar
  59. Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds. Yale University Press, New HavenGoogle Scholar
  60. Stephan H, Pirlot P (1970) Volumetric comparisons of brain structures in bats. Z Zool Syst Evol Forsch 8:200–236CrossRefGoogle Scholar
  61. Stingelin W (1958) Vergleichend morphologische Untersuchungen am Vorderhirn der Vögel auf cytologischer und cytoarchitektonischer Grundlage. Verlag Helbing & Lichtenhahn, BaselGoogle Scholar
  62. Striedter GF (2005) Principles of brain evolution. Sinauer, SunderlandGoogle Scholar
  63. van der Willigen RF, Frost BF, Wagner H (1998) Stereoscopic depth perception in the owl. NeuroReport 9:1233–1237PubMedCrossRefGoogle Scholar
  64. Wagner H, Frost B (1993) Disparity-sensitive cells in the owl have a characteristic disparity. Nature 364:796–798PubMedCrossRefGoogle Scholar
  65. Wallman J, Pettigrew JD (1985) Conjugate and disjunctive saccades in two avian species with contrasting oculomotor strategies. J Neurosci 5:1418–1428PubMedGoogle Scholar
  66. Wild JM (1997) The avian somatosensory system: the pathway from wing to Wulst in a passerine (Chloris chloris). Brain Res 759:122–134PubMedCrossRefGoogle Scholar
  67. Wilson P (1980) The organization of the visual hyperstriatum in the domestic chick. I. Topology and topography of the visual projection. Brain Res 188:319–332PubMedCrossRefGoogle Scholar
  68. Wink M, Sauer-Gürth H, Fuchs M (2004) Phylogenetic relationship in owls based on nucleotide sequences of mitochondrial and nuclear marker genes. In: Chancelor RD, Meyburg B-U (eds) Raptors worldwide. WWGBP, Berlin, pp 517–526Google Scholar
  69. Wylie DR, Shaver SW, Frost BJ (1994) The visual response properties of neurons in the nucleus of the basal optic root of the northern saw-whet owl (Aegolius acadicus). Brain Behav Evol 43:15–25PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of PsychologyUniversity of AlbertaEdmontonCanada
  2. 2.Centre for NeuroscienceUniversity of AlbertaEdmontonCanada

Personalised recommendations