Journal of Comparative Physiology A

, Volume 192, Issue 11, pp 1233–1243

Material structure, stiffness, and adhesion: why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta: Orthoptera)

  • Pablo Perez Goodwyn
  • Andrei Peressadko
  • Heinz Schwarz
  • Victoria Kastner
  • Stanislav Gorb
Original Paper


The morphology, ultrastrucure, effective elastic modulus, and adhesive properties of two different smooth-type attachment pads were studied in two orthopteran species. Tettigonia viridissima (Ensifera) and Locusta migratoria (Caelifera) have a similar structural organization of their attachment pads. They both possess a flexible exocuticle, where the cuticular fibrils are fused into relatively large rods oriented at an angle to the surface. The compliant material of the pad contributes to the contact formation with the substrate. However, the pad material structure was found to be different in these two species. L. migratoria pads bear a thick sub-superficial layer, as well as a higher density of rods. The indentation experiments showed a higher effective elastic modulus and a lower work of adhesion for L. migratoria pads. When the indentations were made at different depths, a higher effective elastic modulus was revealed at lower indentation depths in both species. This effect is explained by the higher stiffness of the superficial pad layer. The obtained results demonstrate a clear correlation between density of the fibres, thickness of the superficial layer, compliance of the pad, and its adhesive properties. Such material structures and properties may be dependent on the preferred environment of each species.


Cuticle Ultrastructure Mechanical properties Adhesion Attachment 


  1. Andersen SO, Weis-Fogh T (1964) Resilin, a rubber-like protein in arthropod cuticle. Adv Insect Physiol 2:1–65CrossRefGoogle Scholar
  2. Arzt E, Gorb SN, Spolenak R (2003) From micro to nano contacts in biological attachment devices. PNAS 100:10603–10606PubMedCrossRefGoogle Scholar
  3. Autumn K, Sitti M, Peattie A, Hansen W, Sponberg S, Liang YA, Kenny T, Fearing R, Israelachvili J, Full RJ (2002) Evidence for van der Waals adhesion in gecko setae. PNAS 99:12252–12256PubMedCrossRefGoogle Scholar
  4. Beutel RG, Gorb SN (2001) Ultrastructure of attachment specializations of hexapods (Arthropoda): evolutionary patterns inferred from a revised ordinal phylogeny. J Zoolog Syst Evol Res 39:177–207CrossRefGoogle Scholar
  5. Carbone G, Mangialardi L, Persson BNJ (2004) Adhesion between a thin elastic plate and a hard randomly rough substrate. Phys Rev B 70:125407CrossRefGoogle Scholar
  6. Dai Z, Gorb SN, Schwarz U (2002) Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J Exp Biol 205:2479–2488PubMedGoogle Scholar
  7. Enders S, Barbakadse N, Gorb SN, Arzt E (2004) Exploring biological surfaces by nanoindentation. J Mater Res 19:880–887CrossRefGoogle Scholar
  8. Federle W, Endlein T (2004) Locomotion and adhesion: dynamic control of adhesive surface contact in ants. Arthropod Struct Dev 33:67–75CrossRefPubMedGoogle Scholar
  9. Frantsevich L, Gorb S (2004) Structure and mechanics of the tarsal chain in the hornet, Vespa crabro (Hymenoptera: Vespidae): implications on the attachment mechanism. Arthropod Struct Dev 33:77–89CrossRefPubMedGoogle Scholar
  10. Gorb SN (1999) Serial elastic elements in the damselfly wing: mobile vein joints contain resilin. Naturwissenschaften 86:552–555PubMedCrossRefGoogle Scholar
  11. Gorb SN (2001) Attachment devices of insect cuticle. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  12. Gorb SN, Beutel RG (2001) Evolution of locomotory attachment pads of hexapods. Naturwissenschaften 88:530–534PubMedCrossRefGoogle Scholar
  13. Gorb SN, Jiao Y, Scherge M (2000) Ultrastructural and mechanical properties of attachment pads in Tettigonia viridissima (Orthoptera, Tettigoniidae). J Comp Physiol A 186:821–831PubMedCrossRefGoogle Scholar
  14. Gorb S, Gorb E, Kastner V (2001) Scale effects on the attachment pads and friction forces in syrphid flies (Diptera, Syrphidae). J Exp Biol 204:1421–1431PubMedGoogle Scholar
  15. Hepburn HR (1985) Structure of the integument. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology. Pergamon, Oxford, pp. 1–58Google Scholar
  16. Hertz H (1881) Über den Kontakt elastischer Körper. J Reine Angew Math 92:156–171Google Scholar
  17. Jiao Y, Gorb SN, Scherge M (2000) Adhesion measured on the attachment pads of Tettigonia viridissima (Orthoptera, Insecta). J Exp Biol 203:1887–1895PubMedGoogle Scholar
  18. Johnson KL (1985) Contact mechanics. Cambridge University Press, CambridgeGoogle Scholar
  19. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324:301–313CrossRefGoogle Scholar
  20. Kohane M, Daugela A, Kutomi H, Charlson L, Wyrobek A, Wyrobek J (2003) Nanoscale in vivo evaluation of the stiffness of Drosophila melanogaster integument during development. J Biomed Mater Res A 66:633–642PubMedCrossRefGoogle Scholar
  21. Neville AC (1975) Biology of arthropod cuticle. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. Niederegger S, Gorb SN, Jiao Y (2002) Contact behaviour of tenant setae in attachment pads of the blowfly Calliphora vicina (Diptera, Calliphoridae). J Comp Physiol A 187:961–970CrossRefGoogle Scholar
  23. Persson BNJ (2003) On the mechanism of adhesion in biological systems. J Chem Phys 118:7614–7621CrossRefGoogle Scholar
  24. Persson BNJ, Gorb S (2003) The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J Chem Phys 119:11437–11444CrossRefGoogle Scholar
  25. Scherge M, Gorb SN (2000) Biological micro- and nanotribology. Nature’s solutions. Springer, Berlin Heidelberg New YorkGoogle Scholar
  26. Slifer EH (1950) Vulnerable areas on the surface of the tarsus and pretarsus of the grasshopper (Acrididae, Orthoptera) with special reference to the arolium. Ann Entomol Soc Am 43:173–188Google Scholar
  27. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43PubMedCrossRefGoogle Scholar
  28. Vincent JFV, Wegst UGK (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33:189–199CrossRefGoogle Scholar
  29. Vötsch W, Nicholson G, Müller R, Stierhof Y-D, Gorb S, Schwarz U (2002) Chemical composition of the attachment pad secretion of the locust Locusta migratoria. Insect Biochem Mol Biol 32:1605–1613PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Pablo Perez Goodwyn
    • 1
    • 3
  • Andrei Peressadko
    • 1
    • 4
  • Heinz Schwarz
    • 2
  • Victoria Kastner
    • 2
  • Stanislav Gorb
    • 1
    • 2
  1. 1.Evolutionary Biomaterials Group, Department ArztMax Planck Institute for Metals ResearchStuttgartGermany
  2. 2.Max Planck Institut für EntwicklungsbiologieTubingenGermany
  3. 3.Laboratory of Insect Ecology, Graduate School of AgricultureKyoto UniversityKyotoJapan
  4. 4.Nanotribology Laboratory for Information Storage and MEMS/NEMS(NLIM)Ohio State UniversityColumbusUSA

Personalised recommendations