Journal of Comparative Physiology A

, Volume 192, Issue 8, pp 833–843

Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter

  • David H. Levenson
  • Paul J. Ponganis
  • Michael A. Crognale
  • Jess F. DeeganII
  • Andy Dizon
  • Gerald H. Jacobs
Original Paper


Rod and cone visual pigments of 11 marine carnivores were evaluated. Rod, middle/long-wavelength sensitive (M/L) cone, and short-wavelength sensitive (S) cone opsin (if present) sequences were obtained from retinal mRNA. Spectral sensitivity was inferred through evaluation of known spectral tuning residues. The rod pigments of all but one of the pinnipeds were similar to those of the sea otter, polar bear, and most other terrestrial carnivores with spectral peak sensitivities (λmax) of 499 or 501 nm. Similarly, the M/L cone pigments of the pinnipeds, polar bear, and otter had inferred λmax of 545 to 560 nm. Only the rod opsin sequence of the elephant seal had sensitivity characteristic of adaptation for vision in the marine environment, with an inferred λmax of 487 nm. No evidence of S cones was found for any of the pinnipeds. The polar bear and otter had S cones with inferred λmax of ∼440 nm. Flicker-photometric ERG was additionally used to examine the in situ sensitivities of three species of pinniped. Despite the use of conditions previously shown to evoke cone responses in other mammals, no cone responses could be elicited from any of these pinnipeds. Rod photoreceptor responses for all three species were as predicted by the genetic data.


Pinnipeds Polar bear Sea otter Visual pigments Opsins 

Supplementary material

359_2006_121_MOESM1_ESM.pdf (88 kb)
Supplementary material


  1. Adrian ED (1946) Rod and cone components in the electric response of the eye. J Physiol 105:24–37PubMedGoogle Scholar
  2. Asenjo AB, Rim J, Oprian DD (1994) Molecular determinants of human red:green color discrimination. Neuron 12:1131–1138CrossRefPubMedGoogle Scholar
  3. Bininda-Emonds ORP (2000) Factors influencing phylogenetic inference: a case study using the mammalian carnivores. Mol Phylo Evol 16:113–126CrossRefGoogle Scholar
  4. Bowmaker JK (1995) The visual pigments of fish. Prog Retinal Eye Res 15:1–31CrossRefGoogle Scholar
  5. Bowmaker JK (1998) Evolution of colour vision in vertebrates. Eye 12:541–547PubMedGoogle Scholar
  6. Calderone JB, Jacobs GH (2003) Spectral properties and retinal distributions of ferret cones. Vis Neurosci 20:11–17CrossRefPubMedGoogle Scholar
  7. Chiu MI, Zack DJ, Wang Y, Nathans J (1994) Murine and bovine blue cone pigment genes: cloning and characterization of two new members of the S family of visual pigments. Genomics 21:440–443CrossRefPubMedGoogle Scholar
  8. Collins FD, Morton RA (1950). Studies on rhodopsin. I. Methods of extraction and the absorption spectrum. Biochem J 47:3–10PubMedGoogle Scholar
  9. Cowing JA, Poopalasundaram S, Wilkie SE, Bowmaker JK, Hunt DM (2002) Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal. Biochem 41:6019–6025CrossRefGoogle Scholar
  10. Crescitelli F (1958) The natural history of visual pigments. Ann New York Acad Sci 74:230–255CrossRefGoogle Scholar
  11. Crognale MA, Levenson D, Ponganis PJ, Deegan JFII, Jacobs GH (1998) Cone spectral sensitivity in the harbour seal (Phoca vitulina) and implications for colour vision. Can J Zool 76:2114–2118CrossRefGoogle Scholar
  12. Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 293:102–104CrossRefPubMedGoogle Scholar
  13. Fasick JI, Applebury ML, Oprian DD (2002) Spectral tuning in the mammalian short-wavelength sensitive cone pigments. Biochem 41:6860–6865CrossRefGoogle Scholar
  14. Fasick JI, Lee N, Oprian DD (1999) Spectral tuning in the human blue cone pigment. Biochem 38:11593–11596CrossRefGoogle Scholar
  15. Fasick JI, Robinson PR (1998) Mechanism of spectral tuning in the dolphin visual pigments. Biochem 37:433–438CrossRefGoogle Scholar
  16. Fasick JI, Robinson PR (2000) Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth. Vis Neurosci 17:781–788CrossRefPubMedGoogle Scholar
  17. Govardovskii VI, Fyhrquist N, Reuter T, Kuzimin DG, Donner K (2001) In search of the visual pigment template. Vis Neurosci 17:509–528CrossRefGoogle Scholar
  18. Griebel U, Peichl L (2003) Color vision in aquatic mammals: facts and open questions. Aquat Mammals 29:18–30CrossRefGoogle Scholar
  19. Hargrave PA (1982) Rhodopsin chemistry, structure, and topography. Prog Retinal Eye Res 1:1–51CrossRefGoogle Scholar
  20. Hillis DM, Moritz C, Mable BK (1996) Molecular systematics, 2nd edn. Sinauer, SunderlandGoogle Scholar
  21. Hunt DM, Dulai KS, Partridge JC, Cottrill P, Bowmaker JK (2001) The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. J Exp Biol 204:3333–3344PubMedGoogle Scholar
  22. Hunt DM, Fitzgibbon J, Slobodyanyuk SJ, Bowmaker JK (1996) Spectral tuning and molecular evolution of rod visual pigments in the species flock of Cottoid fish in Lake Baikal. Vis Res 36:1217–1224CrossRefPubMedGoogle Scholar
  23. Jacobs GH (1993) The distribution and nature of colour vision among the mammals. Biol Rev 68:413–471CrossRefPubMedGoogle Scholar
  24. Jacobs GH, Neitz J, Deegan JFII (1991) Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature 353:655–656CrossRefPubMedGoogle Scholar
  25. Jacobs GH, Deegan JFII, Crognale MA, Fenwick JA (1993) Photopigments of dogs and foxes and their implications for canid vision. Vis Neurosci 10:173–180PubMedCrossRefGoogle Scholar
  26. Jacobs GH, Neitz J, Krogh K (1996a) Electroretinogram flicker photometry and its applications. J Opt Soc Am A13:641–648CrossRefGoogle Scholar
  27. Jacobs GH, Neitz M, Neitz J (1996b) Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proc R Soc Lond Biol Sci 263:705–710CrossRefGoogle Scholar
  28. Jacobs GH, Fenwick JA, Williams GA (2001) Cone-based vision of rats for ultraviolet and visible lights. J Exp Biol 204:2439–2446PubMedGoogle Scholar
  29. Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  30. Lavigne DM, Bernholz CD, Ronald K (1977) Functional aspects of pinniped vision. In: Harrison RJ (ed) Functional anatomy of marine mammals, vol 3. Academic, London, pp 135–173Google Scholar
  31. Lavigne DM, Ronald K (1972) The harp seal, Pagophilus groenlandicus, part 23—spectral sensitivity. Can J Zool 50:1197–1206PubMedCrossRefGoogle Scholar
  32. Lavigne DM, Ronald K (1975) Pinniped visual pigments. Comp Biochem Physiol 52B:325–329Google Scholar
  33. Levenson DH, Schusterman RJ (1997) Pupillometry in seals and sea lions: ecological implications. Can J Zool 75:2050–2057CrossRefGoogle Scholar
  34. Levenson DH, Dizon A (2003) Genetic evidence for the ancestral loss of short-wavelength-sensitive cone pigments in mysticete and odontocete cetaceans. Proc R Soc Lond Biol Sci B270:673–679CrossRefGoogle Scholar
  35. Lythgoe JN, Dartnall HJA (1970) A “deep sea rhodopsin” in a mammal. Nature 227:955–956CrossRefPubMedGoogle Scholar
  36. Marmor MF, Zrenner E (1999) Standard for clinical electroretinography, 1999 update. Doc Ophth 97:143–156CrossRefGoogle Scholar
  37. McFarland WN (1971) Cetacean visual pigments. Vis Res 11:1065–1076CrossRefPubMedGoogle Scholar
  38. Nathans J (1990) Determinants of visual pigment absorbance: role of charged amino acids in the putative transmembrane segments. Biochem 29:937–942CrossRefGoogle Scholar
  39. Oprian DD, Asenjo AA, Lee N, Pelletier S (1991) Design, chemical synthesis, and expression of genes for the three human color vision pigments. Biochem 30:11367–11372CrossRefGoogle Scholar
  40. Peichl L, Behrmann G, Kroger RHH (2001) For whales and seals the ocean is not blue: a visual pigment loss in marine mammals. Eur J Neurosci 13:1520–1528CrossRefPubMedGoogle Scholar
  41. Peichl L, Moutairou K (1998). Absence of short-wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia). Eur J Neurosci 10:2586–2594CrossRefPubMedGoogle Scholar
  42. Rice DW (1998) Marine mammals of the world: systematics and distribution. Society for Marine Mammalogy, Lawrence, KSGoogle Scholar
  43. Robinson PR, Griffith K, Gross JM, O’Neil MC (1999) A back-propagation neural network predicts absorption maxima of chimeric human red:green visual pigments. Vis Res 39:1707–1712CrossRefPubMedGoogle Scholar
  44. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Nat Acad Sci USA 74:5463–5467PubMedCrossRefGoogle Scholar
  45. Schusterman RJ, Kastak D, Levenson DH, Reichmuth CJ, Southall BL (2000) Why pinnipeds don’t echolocate. J Acoust Soc Am 107:2256–2264CrossRefPubMedGoogle Scholar
  46. Shi Y, Yokoyama S (2003) Molecular analysis of the evolutionary significance of ultraviolet vision in vertebrates. Proc Nat Acad Sci USA 100:8308–8313CrossRefPubMedGoogle Scholar
  47. Southall KD, Oliver GW, Lewis JW, Le Boeuf BJ, Levenson DH, Southall BL (2002) Visual pigment sensitivity in three deep diving marine mammals. Mar Mam Sci 18:275–281CrossRefGoogle Scholar
  48. Swofford DL (2001) Phylogenetic analysis using parsimony, version 4. Sinauer, SunderlandGoogle Scholar
  49. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl Acid Res 22:4673–4680CrossRefGoogle Scholar
  50. Tremblay F, Parkinson JE (2003) Alteration of electroretinographic recordings when performed under sedation or halogenate anesthesia in a pediatric population. Doc Opthalm 107:271–279CrossRefGoogle Scholar
  51. Walls G (1942) The vertebrate eye and its adaptive radiation. The Cranbrook Institute of Science, Bloomfield HillsGoogle Scholar
  52. Wasserschaff M, Schmidt JGH (1986) Electroretinographic responses to the additional of nitrous oxide to halothane in rats. Doc Ophthalm 64:347–354CrossRefGoogle Scholar
  53. Yokoyama S, Radlwimmer FB (1998) The “five sites” rule and the evolution of red and green color vision in mammals. Mol Biol Evol 15:5660–5667Google Scholar
  54. Yokoyama S, Radlwimmer FB (1999) The molecular genetics of red and green color vision in mammals. Genetics 153:919–932PubMedGoogle Scholar
  55. Yokoyama S, Radlwimmer FB (2001) The molecular genetics and evolution of red and green color vision in vertebrates. Genetics 158:1697–1710PubMedGoogle Scholar
  56. Yokoyama S, Yokoyama R (1996) Adaptive evolution of photoreceptors and visual pigments in vertebrates. Ann Rev Ecol Sys 27:543–567CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • David H. Levenson
    • 1
    • 2
  • Paul J. Ponganis
    • 1
  • Michael A. Crognale
    • 3
  • Jess F. DeeganII
    • 4
  • Andy Dizon
    • 2
  • Gerald H. Jacobs
    • 5
  1. 1.Scripps Institution of Oceanography, UCSDLa JollaUSA
  2. 2.Southwest Fisheries Science Center, NMFSLa JollaUSA
  3. 3.Department of PsychologyUniversity of NevadaRenoUSA
  4. 4.Department of PsychologyCalifornia State UniversityBakersfieldUSA
  5. 5.Neuroscience Research InstituteUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations