Individual versus social pathway to honeybee worker reproduction (Apis mellifera): pollen or jelly as protein source for oogenesis?

  • M. O. Schäfer
  • V. Dietemann
  • C. W. W. Pirk
  • P. Neumann
  • R. M. Crewe
  • H. R. Hepburn
  • J. Tautz
  • K. Crailsheim
Original Paper


Honeybee workers, Apis mellifera, can reproduce in queenless colonies. The production of queen-like pheromones may be associated with their reproductive activity and induce nestmates to respond by feeding them. Such frequent trophallaxis could supply their protein needs for oogenesis, constituting a social pathway to worker reproduction. However, some individuals can develop ovaries without producing queen pheromones. The consumption of protein-rich pollen could be an alternative solitary pathway for them to satisfy this dietary requirement. In order to investigate the way in which workers obtain proteins for oogenesis, we created orphaned worker groups and determined ovarian and pheromonal development in relation to pollen consumption of selected workers. Individuals that did not consume pollen had significantly more developed ovaries and produced significantly more queen mandibular pheromone than workers that fed directly on pollen. Our results suggest that workers producing queen-like secretions are fed trophallactically. However, reproductive workers that lacked queen pheromones had consumed little or no pollen, suggesting that they also obtained trophallaxis. Although pollen consumption might contribute to sustaining oogenesis, it does not appear to be sufficient. Trophallaxis as a means of obtaining proteins seems to be necessary to attain reproductive status in queenless honeybee colonies.


Honeybees Worker reproduction Pheromonal dominance Trophallaxis Pollen consumption 


  1. Allen MD (1955) Observations of honeybees attending their queen. Brit J Anim Behav 3:66–69CrossRefGoogle Scholar
  2. Allen MD (1960) The honeybee queen and her attendants. Anim Behav 8:201–208CrossRefGoogle Scholar
  3. Anderson RH (1963) The laying worker in the Cape honeybee Apis mellifera capensis. J Apic Res 2:85–92Google Scholar
  4. Barbier M, Lederer E (1960) Structure chimique de la ‘substance royale’ de la reine d’abeille (Apis mellifica). C R Acad Sci (Paris) 250:4467–4469Google Scholar
  5. Barker RJ, Lehner Y (1972) A look at honey bee gut functions. Am Bee J 112:336–338Google Scholar
  6. Baudry E, Kryger P, Allsopp M, Koeniger N, Vautrin D, Mougel F, Cornuet JM, Solignac M (2004) Whole-genome scan in thelytokous-laying workers of the Cape honeybee (Apis mellifera capensis): central fusion, reduced recombination rates and centromere mapping using half-tetrad analysis. Genetics 167:243–252PubMedCrossRefGoogle Scholar
  7. Bitondi MMG, Simões ZLP (1996) The relationship between level of pollen in the diet and juvenile hormone titres in africanized Apis mellifera workers. J Apic Res 35:27–36Google Scholar
  8. Boch R, Shearer DA, Shuel RW (1979) Octanoic and other volatile acids in the mandibular gland of the honeybee and in royal jelly. J Apic Res 18:250–253Google Scholar
  9. Bourke AFG (1988) Worker reproduction in the higher eusocial Hymenoptera. Q Rev Biol 63:291–311CrossRefGoogle Scholar
  10. Buttel-Reepen H v (1900) Sind die Bienen Reflexmaschinen? LeipzigGoogle Scholar
  11. Callow RK, Johnston NC, Simpson J (1959) 10-hydroxy-delta 2-decenoic acid in the honeybee (Apis mellifera). Experientia 15:421–422PubMedCrossRefGoogle Scholar
  12. Choe J (1988) Worker reproduction and social evolution in ants (Hymenoptera: Formicidae). In: Trager JC (ed) Advances in myrmecology. Brill EJ, Leiden, pp 163–187Google Scholar
  13. Crailsheim K (1990) The protein balance of the honey bee worker. Apidologie 21:417–429CrossRefGoogle Scholar
  14. Crailsheim K (1991) Interadult feeding of jelly in honeybee (Apis mellifera L.) colonies. J Comp Physiol B 161:55–60CrossRefGoogle Scholar
  15. Crailsheim K, Schneider LHW, Hrassnigg N, Bühlmann G, Brosch U, Gmeinbauer R, Schöffmann B (1992) Pollen consumption and utilization in worker honey bees (Apis mellifera carnica): dependence on individual age and function. J Insect Physiol 38:409–419CrossRefGoogle Scholar
  16. Cremonez TM, De Jong D, Bitondi MMG (1998) Quantification of hemolymph proteins as a fast method for testing protein diets of honey bees (Hymenoptera: Apidae). J Econ Entomol 91:1284–1289Google Scholar
  17. Crewe RM (1988) Natural history of honey-bee mandibular gland secretions: development of analytical techniques and the emergence of complexity. In: Needham GR, Page RE, Delfinado-Baker M, Bowman CE (eds) Africanized honeybees and bee mites. Ellis Horwood Limited, England, pp 149–158Google Scholar
  18. Crewe RM, Velthuis HHW (1980) False queens: a consequence of mandibular gland signals in worker honeybees. Naturwissenschaften 67:467–469CrossRefGoogle Scholar
  19. Free JB, Ferguson AW, Simpkins JR (1992) The behaviour of queen honeybees and their attendants. Physiol Entomol 17:43–55CrossRefGoogle Scholar
  20. Greeff JM (1996) Thelytokous versus arrhenotokous worker reproduction in the Cape honeybee and other eusocial Hymenoptera. Hereditas 124:99–103CrossRefGoogle Scholar
  21. Grogan DE, Hunt JH (1979) Pollen proteases: their potential role in insect digestion. Insect Biochem 9:309–313CrossRefGoogle Scholar
  22. Happ GM (1984) Major life systems. In: Evans HE (eds) Insect biology. Addison-Wesley publishing, Reading, MA, pp 70–92Google Scholar
  23. Haydak MH (1970) Honey bee nutrition. Ann Rev Entomol 15:143–156CrossRefGoogle Scholar
  24. Hemmling C, Koeniger N, Ruttner F (1979) Quantitative Bestimmung der 9-Oxodecensäure im Lebenszyklus der Kapbiene (Apis mellifera capensis Escholtz). Apidologie 10:227–240CrossRefGoogle Scholar
  25. Hepburn HR (1992) Pheromonal and ovarian development covary in Cape Honeybees, Apis mellifera capensis. Naturwissenschaften 79:523–524CrossRefGoogle Scholar
  26. Hepburn HR (1994) Reproductive cycling and hierarchical competition in Cape honeybees, Apis mellifera capensis Esch. Apidologie 25:38–48CrossRefGoogle Scholar
  27. Hepburn HR, Allsopp MH (1994) Reproductive conflict between honeybees: usurpation of Apis mellifera scutellata colonies by Apis mellifera capensis. S Afr J Sci 90:247–249Google Scholar
  28. Hepburn HR, Neumann P, Radloff SE (2004) Genetic variation in natural honeybee populations, Apis mellifera capensis Esch. Naturwissenschaften 91:447–450PubMedCrossRefGoogle Scholar
  29. Hillesheim E, Koeniger N, Moritz RFA (1989) Colony performance in honeybees (Apis mellifera capensis) depends on proportion of subordinate and dominant workers. Behav Ecol Sociobiol 24:291–296CrossRefGoogle Scholar
  30. Hoover SER, Keeling CI, Winston ML, Slessor KN (2003) The effect of queen pheromones on worker honey bee ovary development. Naturwissenschaften 90:477–480PubMedCrossRefGoogle Scholar
  31. Howe SR, Dimick PS, Benton AW (1985) Composition of freshly harvested and commercial royal jelly. J Apic Res 24:52–61Google Scholar
  32. Klungness LM, Peng YS (1984a) A histochemical study of pollen digestion in the alimentary canal of honeybees (Apis mellifera L). J Insect Physiol 30:511–521CrossRefGoogle Scholar
  33. Klungness LM, Peng YS (1984b) Scanning electron microscope observation of pollen food bolus in the alimentary canal of honeybees. Can J Zool 62:1316–1319CrossRefGoogle Scholar
  34. Lin H, Winston ML (1998) The role of nutrition and temperature in the ovarian development of the worker honey bee (Apis mellifera). Can Entomol 130:883–891CrossRefGoogle Scholar
  35. Loidl A, Crailsheim K (2001) Free fatty acids from pollen and triolein in the honeybee (Apis mellifera carnica Pollmann) midgut. J Comp Physiol B 171:313–319PubMedCrossRefGoogle Scholar
  36. Moritz B, Crailsheim K (1987) Physiology of protein digestion in the midgut of the honeybee (Apis mellifera L.). J Insect Physiol 33:923–931CrossRefGoogle Scholar
  37. Moritz RFA, Hillesheim E (1985) Inheritance of dominance in honeybees (Apis mellifera capensis). Behav Ecol Sociobiol 17:87–89CrossRefGoogle Scholar
  38. Moritz RFA, Haberl M (1994) Lack of meiotic recombination in thelytokous parthenogenesis of laying workers of Apis mellifera capensis (the Cape honeybee). Heredity 73:98–102CrossRefGoogle Scholar
  39. Moritz RFA, Kryger P, Allsopp M (1996) Competition for royalty in bees. Nature 384:522CrossRefGoogle Scholar
  40. Moritz RFA, Simon UE, Crewe RM (2000) Pheromonal contest between honeybee workers. Naturwissenschaften 87:395–397PubMedCrossRefGoogle Scholar
  41. Moritz RFA, Lattorff HMG, Crewe RM (2004) Honeybee workers (Apis mellifera capensis) compete for producing queen-like pheromone signals. Biol Lett Proc R Soc Lond (Suppl) 271:98–100CrossRefGoogle Scholar
  42. Neumann P, Hepburn HR (2002) Behavioural basis for social parasitism of Cape honeybees (Apis mellifera capensis Esch.). Apidologie 33:165–192CrossRefGoogle Scholar
  43. Onions GW (1909) Bees: workers and queens from eggs laid by workers. Agric J Cape Good Hope 35:527Google Scholar
  44. Pankiw T, Winston ML, Plettner E, Slessor KN (1996) Mandibular gland pheromone components of European and Africanized honey bee queens (Apis mellifera L.). J Chem Ecol 22:605–615CrossRefGoogle Scholar
  45. Peng YS, Nasr ME, Marston JM (1986) Release of alfalfa, Medicago sativa, pollen cytoplasm in the gut of the honey bee, Apis mellifera (Hymenoptera: Apidae). Ann Entomol Soc Am 79:804–807Google Scholar
  46. Pettis JS, Westcott LC, Winston ML (1998) Balling behaviour in the honey bee in response to exogenous queen mandibular gland pheromone. J Apic Res 37:125–131Google Scholar
  47. Ribbands CR (1953) The behaviour and social life of honeybees. Bee Research Association, LondonGoogle Scholar
  48. Robinson GE (1999) Integrative animal behaviour and sociogenomics. TREE 14:202–205PubMedGoogle Scholar
  49. Roulston T, Cane JH, Buchmann SL (2000) What governs protein content of pollen: pollinator preferences, pollen-pistil interactions, or phylogeny? Ecol Monogr 70:617–643Google Scholar
  50. Ruttner F, Hesse B (1981) Rassenspezifische Unterschiede in Ovarienentwicklung und Eiablage von weisellosen Arbeiterinnen der Honigbiene Apis mellifera L. Apidologie 12:159–183CrossRefGoogle Scholar
  51. Rutz W, Lüscher M (1974) The occurrence of vitellogenin in workers and queens of Apis mellifera and its transmission to the queen. J Insect Physiol 20:897–909PubMedCrossRefGoogle Scholar
  52. Simon UE, Moritz RFA, Crewe RM (2001) The ontogenetic pattern of mandibular gland components in queenless worker bees (Apis mellifera capensis Esch.). J Insect Physiol 47:735–738PubMedCrossRefGoogle Scholar
  53. Simon U, Moritz RFA, Crewe RM (2005) Reproductive dominance among honeybee workers in experimental groups of Apis mellifera capensis. Apidologie 36:413–419CrossRefGoogle Scholar
  54. Sakagami SF (1953) Untersuchungen über die Arbeitsteilung in einem Zwergvolk der Honigbiene. Beiträge zur Biologie des Bienenvolkes. Jap J Zool 11:117–185Google Scholar
  55. Sakagami SF (1958) The false queen: fourth adjustive response in dequeened honeybee colonies. Behaviour 13:280–296CrossRefGoogle Scholar
  56. Slessor KN, Kaminski LA, Ki GGS, Borden JH, Winston ML (1988) Semiochemical basis of the retinue response to queen honey bees. Nature 332:354–356CrossRefGoogle Scholar
  57. Stanley RG, Linskens HF (1974) Pollen: biology, biochemistry, management. Springer, Berlin Heidelberg New YorkGoogle Scholar
  58. Velthuis HHW (1970) Ovarian development in Apis mellifera worker bees. Entomol Exp Appl 13:377–394CrossRefGoogle Scholar
  59. Velthuis HHW, Ruttner F, Crewe RM (1990) Differentiation in reproductive physiology and behaviour during the development of laying worker honeybees. In: Engels W (eds) Social Insects. Springer, Berlin Heidelberg New York, pp 231–243Google Scholar
  60. Visscher PK, Dukas R (1995) Honey bees recognise development of nestmates’ ovaries. Anim Behav 49:542–544CrossRefGoogle Scholar
  61. Vollbehr J (1975) Zur Orientierung junger Honigbienen bei ihrem 1. Orientierungsflug. Zool Jb Physiol 79:33–69Google Scholar
  62. Wheeler DE (1996) The role of nourishment in oogenesis. Ann Rev Entomol 41:403–431CrossRefGoogle Scholar
  63. Wilson EO (1971) The insect societies. Harvard University Press, CambridgeGoogle Scholar
  64. Wossler TC (2002) Pheromone mimicry by Apis mellifera capensis social parasites leads to reproductive anarchy in host Apis mellifera scutellata colonies. Apidologie 33:139–163CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. O. Schäfer
    • 1
  • V. Dietemann
    • 2
  • C. W. W. Pirk
    • 2
  • P. Neumann
    • 3
    • 4
  • R. M. Crewe
    • 2
  • H. R. Hepburn
    • 4
  • J. Tautz
    • 5
  • K. Crailsheim
    • 6
  1. 1.Chemisches und Veterinäruntersuchungsamt FreiburgFreiburgGermany
  2. 2.Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
  3. 3.Institut für ZoologieMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany
  4. 4.Department of Zoology and EntomologyRhodes UniversityGrahamstownSouth Africa
  5. 5.Bee-groupBiozentrum der Universität WürzburgWürzburgGermany
  6. 6.Institut für ZoologieUniversität GrazGrazAustria

Personalised recommendations