Journal of Comparative Physiology A

, Volume 191, Issue 8, pp 675–693 | Cite as

Magnetic orientation and magnetoreception in birds and other animals

  • Wolfgang WiltschkoEmail author
  • Roswitha Wiltschko


Animals use the geomagnetic field in many ways: the magnetic vector provides a compass; magnetic intensity and/or inclination play a role as a component of the navigational ‘map’, and magnetic conditions of certain regions act as ‘sign posts’ or triggers, eliciting specific responses. A magnetic compass is widespread among animals, magnetic navigation is indicated e.g. in birds, marine turtles and spiny lobsters and the use of magnetic ‘sign posts’ has been described for birds and marine turtles. For magnetoreception, two hypotheses are currently discussed, one proposing a chemical compass based on a radical pair mechanism, the other postulating processes involving magnetite particles. The available evidence suggests that birds use both mechanisms, with the radical pair mechanism in the right eye providing directional information and a magnetite-based mechanism in the upper beak providing information on position as component of the ‘map’. Behavioral data from other animals indicate a light-dependent compass probably based on a radical pair mechanism in amphibians and a possibly magnetite-based mechanism in mammals. Histological and electrophysiological data suggest a magnetite-based mechanism in the nasal cavities of salmonid fish. Little is known about the parts of the brain where the respective information is processed.


Magnetic Intensity Magnetic Compass Marine Turtle Homing Pigeon Radical Pair Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baker RR (1989) Human navigation and magnetoreception. Manchester University Press, Manchester and New YorkGoogle Scholar
  2. Beason RC, Brennon WJ (1986) Natural and induced magnetization in the bobolink (Dolichonyx orycivorus). Ethology 91:75–80Google Scholar
  3. Beason RC, Nichols JE (1984) Magnetic orientation and magnetically sensitive material in a transequatorial migratory bird. Nature 309:151–153CrossRefGoogle Scholar
  4. Beason RC, Semm P (1991) Two different magnetic systems in avian orientation. In: Bell BD, Cossee RO, Flux JEC, Heather BD, Hitchmough RA, Robertson CJR, Williams MJ (eds) Acta XX Congr Intern Ornithol, New Zealand Ornithological Congress Trust Board, Wellington, pp 1813–1819Google Scholar
  5. Beason RC, Semm P (1996) Does the avian ophthalmic nerve carry magnetic navigational information? J Exp Biol 199:1241–1244PubMedGoogle Scholar
  6. Beason RC, Dussourd N, Deutschlander M (1995) Behavioural evidence for the use of magnetic material in magnetoreception by a migratory bird. J Exp Biol 198:141–146PubMedGoogle Scholar
  7. Beason RC, Wiltschko R, Wiltschko W (1997) Pigeon homing: effects of magnetic pulses on initial orientation. Auk 114:405–415Google Scholar
  8. Beck W, Wiltschko W (1988) Magnetic factors control the migratory direction of Pied Flycatchers (Ficedula hypoleuca Pallas). In: Ouellet H (ed) Acta XIX Congr Int Ornithol Vol II. University of Ottawa Press, Ottawa, pp 1955–1962Google Scholar
  9. Blakemore RP (1975) Magnetotactic bacteria. Science 190:377–379PubMedGoogle Scholar
  10. Boles LC, Lohmann KJ (2003) True navigation and magnetic map in spiny lobsters. Nature 421:60–63CrossRefPubMedGoogle Scholar
  11. Cranfield J, Belford R, Debrunner P, Schulten K (1994) A perturbation treatment of oscillating magnetic fields in the radical pair mechanism. Chem Phys 182:1–18CrossRefGoogle Scholar
  12. Davila AF, Winklhofer M, Sheherbakov V, Petersen N Magnetic pulse affects a putative magnetoreceptor mechanism. Biophys J in pressGoogle Scholar
  13. DeJong D (1982) Orientation of comb building by honeybees. J Comp Physiol 147:495–501CrossRefGoogle Scholar
  14. Deutschlander ME, Phillips JB, Borland SC (1999) The case for light-dependent magnetic orientation in animals. J Exp Biol 202:891–908PubMedGoogle Scholar
  15. Diebel CE, Proksch R, Green CR, Neilson P, Walker MM (2000) Magnetite defines a vertebrate magnetoreceptor. Nature 406:299–302CrossRefPubMedGoogle Scholar
  16. Duelli P, Duelli-Klein R (1978) Die magnetische Nestausrichtung der australischen Kompaßtermite Amitermes meridionalis. Mitt Schweiz Entomol Ges 51:337–342Google Scholar
  17. Edmonds DT (1996) A sensitive optically detected magnetic compass for animals. Proc R Soc Lond B 263:295–298Google Scholar
  18. Fisher JH, Munro U, Phillips JB (2003) Magnetic navigation in an avian migrant? In: Berthold P, Gwinner E, Sonnenschein E (ed) Avian migration. Springer, Berlin Heidelberg New York, pp 423–432Google Scholar
  19. Fleissner G, Holtkamp-Rötzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N, Wiltschko W (2003) Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J Comp Neurol 458:350–360CrossRefPubMedGoogle Scholar
  20. Fransson T, Jakobsson S, Johansson P, Kullberg C, Lind J, Vallin A (2001) Magnetic cues trigger extensive refuelling. Nature 414:35–36CrossRefPubMedGoogle Scholar
  21. Giovani B, Byrdin M, Ahmad M, Brettel K (2003) Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nature Struct Biol 6:489–490CrossRefGoogle Scholar
  22. Gould JL, Kirschvink JL, Deffeyes KS (1978) Bees have magnetic remanence. Science 201:1026–1028Google Scholar
  23. Gundmundsson GA, Sandberg R (2000) Sanderlings (Calidris alba) have a magnetic compass: orienation experiments during spring migration in Iceland. J Exp Biol 203:3137–3144PubMedGoogle Scholar
  24. Güntürkün O (1997) Morphological asymmetries of the tectum opticum in the pigeon. Exp Brain Res 116:561–566PubMedGoogle Scholar
  25. Hanzlik M, Heunemann C, Holzkamp-Rötzler E, Winklhofer M, Petersen N, Fleissner G (2000) Superparamagnetic magnetite in the upper beak tissue of homing pigeons. BioMetals 13:325–331CrossRefPubMedGoogle Scholar
  26. Haque R, Charausia SS, Wessel JH, Iuvone PM (2002) Dual regulation of cryptochrome I mRNA expression in chicken retina by light and circadian oscillators. Neuroreport 13:2247–2251CrossRefPubMedGoogle Scholar
  27. Henbest KB, Kukura P, Rodgers CT, Hore PJ, Timmel CR (2004) Radio frequency magnetic field effects on a radical recombination reaction: a diagnostic test for the radical pair mechanism. J Am Chem Soc 126:8102–8103CrossRefPubMedGoogle Scholar
  28. Jacklyn PM, Munro U (2002) Evidence for the use of magnetic cues in mound construction by the termite Amitermes meridionalis (Isoptera, Termitinae). Austr J Zool 50:357–368CrossRefGoogle Scholar
  29. Kalmijn AJ (1978) Electric and magnetic sensory world of sharks, skates, and rays. In: Hodgson FS, Mathewson RF (eds) Sensory biology of sharks, skates and rays. Office Naval Res, Arlington, VA, pp 507–528Google Scholar
  30. Keeton WT, Larkin TS, Windsor DM (1974) Normal fluctuation in the earth’s magnetic field influence pigeon orientation. J Comp Physiol 95:95–103CrossRefGoogle Scholar
  31. Kirschvink JL, Gould JL (1981) Biogenetic magnetite as a basis for magnetic field detection in animals. BioSystems 13:181–201CrossRefPubMedGoogle Scholar
  32. Kirschvink JL, Walker MM (1985) Particle-size considerations for magnetite-based magnetoreceptors. In: Kirschvink JL, Jones DS, MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms. Plenum, New York, London, pp 243–256Google Scholar
  33. Kirschvink JL, Jones DS, MacFadden BJ (eds) (1985) Magnetite biomineralization and magnetoreception in organisms. Plenum, New YorkGoogle Scholar
  34. Light P, Salmon M, Lohmann KJ (1993) Geomagnetic orientation of loggerhead sea turtles: evidence for an inclination compass. J Exp Biol 182:1–10Google Scholar
  35. Lohmann KJ (1991) Magnetic orientation by hatchling loggerhead sea turtles (Caretta caretta). J Exp Biol 155:37–49PubMedGoogle Scholar
  36. Lohmann KJ, Lohmann CMF (1992) Orientation to oceanic waves by green turtle hatchlings. J Exp Biol 171:1–13Google Scholar
  37. Lohmann KJ, Lohmann CMF (1993) A light-independent magnetic compass in the leatherback sea turtle. Biol Bull 185:149–151Google Scholar
  38. Lohmann KJ, Lohmann CMF (1994) Detection of magnetic inclination angle by sea turtles: a possible mechanism for determining latitudes. J Exp Biol 194:23–32PubMedGoogle Scholar
  39. Lohmann KJ, Lohmann CMF (1996) Detection of magnetic field intensity by sea turtles. Nature 380:59–61CrossRefGoogle Scholar
  40. Lohmann KJ, Pentcheff ND, Nevitt GA, Stetten GD, Zimmer-Faust RK, Jarrard HE, Boles LC (1995) Magnetic orientation of spiny lobsters in the ocean: experiments with underseas coil systems. J Exp Biol 198:2041–2048PubMedGoogle Scholar
  41. Lohmann KJ, Cain SD, Dodge SA, Lohmann CMF (2001) Regional magnetic fields as navigational markers for sea turtles. Science 294:364–366CrossRefPubMedGoogle Scholar
  42. Lohmann KJ, Lohmann CMF, Erhart LM, Bagley DA, Swing T (2004) Geomagnetic map used in sea-turtle navigation. Nature 428:909–910CrossRefPubMedGoogle Scholar
  43. Mai JK, Semm P (1990) Patterns of glucose utilization following magnetic stimulation. J Hirnforsch 31:331–336PubMedGoogle Scholar
  44. Maier EJ (1992) Spectral sensitivities including the ultraviolet of the passeriform bird Leiothrix lutea. J Comp Physiol A 170:709–714CrossRefGoogle Scholar
  45. Mann S, Sparks NHC, Walker MM, Kirschvink JL (1988) Ultrastructure, morphology and organization of biogenic magnetite from Sockeyes salmon, Oncorhynchus nerka: implications for magnetoreception. J Exp Biol 140:35–49PubMedGoogle Scholar
  46. Marhold S, Burda H, Wiltschko W (1997a) A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84:421–423CrossRefGoogle Scholar
  47. Marhold S, Burda H, Kreilos I, Wiltschko W (1997b) Magnetic orientation in the common mole-rat from Zambia. In: Orientation and navigation—birds, humans and other animals. Royal Instit of Navig, Oxford, 5-1–5-9Google Scholar
  48. Miyamoto Y, Sancar A (1998) Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc Natl Acad Sci USA 95:6097–6102CrossRefPubMedGoogle Scholar
  49. Möller A, Gesson M, Noll C, Phillips J, Wiltschko R, Wiltschko W (2001) Light-dependent magnetoreception in migratory birds previous exposure to red light alters the response to red light. In: Orientation and navigation—birds, humans and other animals. Royal Institute of Navigation, Oxford, 6-1–6-6Google Scholar
  50. Möller A, Sagasser S, Wiltschko W, Schierwater B (2004) Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Naturwissenschaften 91:585–588CrossRefPubMedGoogle Scholar
  51. Mora CV, Davison M, Wild JM, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature 432:508–511CrossRefPubMedGoogle Scholar
  52. Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R (2004) Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc Nat Acad Sci USA 101:14294–14299CrossRefPubMedGoogle Scholar
  53. Muheim R, Bäckman J, Åkesson S (2002) Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light. J Exp Biol 205:3845–3856PubMedGoogle Scholar
  54. Munro U, Munro JA, Phillips JB, Wiltschko R, Wiltschko W (1997) Evidence for a magnetite-based navigational ‘map’ in birds. Naturwissenschaften 84:26–28CrossRefGoogle Scholar
  55. Murray RW (1962) The response of the ampullae of Lorenzini of elasmobranchs to electrical stimulation. J Exp Biol 39:119–128PubMedGoogle Scholar
  56. Němec P, Altmann J, Marhold S, Burds H, Oelschläger HHA (2001) Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294:366–368CrossRefPubMedGoogle Scholar
  57. Pardi L, Ugolini A, Faqi AS, Scapini F, Ercolini A (1988) Zonal recovering in equatorial sandhoppers: Interaction between magnetic and solar orientation. In: Chelazzi G, Vannini M (eds) Behavioral adaptation to intertidal life. Proc of the NATO Sci, Plenum, New York, London, pp 79–92Google Scholar
  58. Phillips JB (1986) Two magnetoreception pathways in a migratory salamander. Science 233:765–767PubMedGoogle Scholar
  59. Phillips JB, Borland SC (1992a) Magnetic compass orientation is eliminated under near-infrared light in the eastern red-spotted newt Notophthalmus viridescens. Anim Behav 44:796–797Google Scholar
  60. Phillips JB, Borland SC (1992b) Behavioral evidence for use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 359:142–144CrossRefGoogle Scholar
  61. Phillips JB, Borland SC (1994) Use of a specialized magnetoreception system for homing by the eastern red-spotted newt Notophthalmus viridescens. J Exp Biol 188:275–291PubMedGoogle Scholar
  62. Phillips JB, Deutschlander ME (1997) Magnetoreception in terrestrial vertebrates: implications for possible mechanisms of EMF interaction with biological systems. In: Stevens RG, Wilson BW, Andrews LE (eds) The melatonin hypothesis: electric power and the risk of breast cancer. Battelle Press, Columbus Ohio, pp 111–172Google Scholar
  63. Phillips JB, Deutschlander ME, Freake MJ, Borland SC (2001) The role of extraocular photoreceptors in newt magnetic compass orientation: parallels between light-dependent magnetoreception and polarized light detection in vertebrates. J Exp Biol 204:2543–2552PubMedGoogle Scholar
  64. Phillips JB, Freake MJ, Borland SC (2002a) Behavioral titration of magnetic map coordinates. J Comp Physiol A 188:157–160CrossRefGoogle Scholar
  65. Phillips JB, Borland SC, Freake M, Brassart J, Kirschvink JL (2002b) ‘Fixed-axis’ magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? J Exp Biol 205:3903–3914Google Scholar
  66. Prior H, Wiltschko R, Stapput K, Güntürkün O, Wiltschko W (2004) Visual lateralization and homing in pigeons. Behav Brain Res 154:301–310CrossRefPubMedGoogle Scholar
  67. Quinn TP (1980) Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. J Comp Physiol 137:243–248CrossRefGoogle Scholar
  68. Quinn TP, Brannon EL (1982) The use of celestial and magnetic cues by orienting sockeye salmon smolts. J Comp Physiol 147:547–552CrossRefGoogle Scholar
  69. Ritz T, Adem S, Schulten K (2000) A model for vision-based magnetoreception in birds. Biophys J 78:707–718PubMedGoogle Scholar
  70. Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W (2004) Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429:177–180CrossRefPubMedGoogle Scholar
  71. Sancar A (2003) Structure and function of DNA photolyase and cryptochrome blue-light photorceptors. Chem Rev 103:2203–2237CrossRefPubMedGoogle Scholar
  72. Schulten K, Windemuth A (1986) Model for a physiological magnetic compass. In: Maret G, Boccara N, Kiepenheuer J (eds). Biophysical effects of steady magnetic fields. Springer, Berlin Heidelberg New York, pp 99–106Google Scholar
  73. Semm P, Beason RC (1990) Responses to small magnetic variations by the trigeminal system of the Bobolink. Brain Res Bull 25:735–740CrossRefPubMedGoogle Scholar
  74. Semm P, Demaine C (1986) Neurophysiological properties of magnetic cells in the pigeon’s visual system. J Comp Physiol A 159:619–625CrossRefPubMedGoogle Scholar
  75. Semm P, Nohr D, Demaine C, Wiltschko W (1984) Neural basis of the magnetic compass: interaction of visual, magnetic and vestibular inputs in the pigeons’s brain. J Comp Physiol 155:283–288CrossRefGoogle Scholar
  76. Shcherbakov VP, Winklhofer M (1999) The osmotic magnetometer: a new model for magnetite-based magnetoreceptors in animals. Eur Biophys J 28:380–392CrossRefGoogle Scholar
  77. Skiles DD (1985) The geomagnetic field: its nature, history and biological relevance. In: Kirschvink JL, Jones DS MacFadden BJ (eds) Magnetite biomineralization and magnetoreception in organisms. Plenum, New York, London, pp 43–102Google Scholar
  78. Stapput K, Gesson M, Wiltschko R, Wiltschko W (2005) Light-dependent magnetoreception: behavior of migratory birds under monochromatic and bichromatic lights. In: Orientation and Navigation. Proc RIN 05 Conf, Royal Institute of Navigation, Reading (in press)Google Scholar
  79. Thalau P, Ritz T, Stapput K, Wiltschko R, Wiltschko W (2005) Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field. Naturwissenschaften 92:86–90CrossRefPubMedGoogle Scholar
  80. Viguier C (1882) Le sens de l’orientation et ses organes chez les animaux et chez l’homme. Revue Philosophique de la France et de l’Étranger 14:1–36Google Scholar
  81. Walcott C (1978) Anomalies in the earth’s magnetic field increase the scatter of pigeons’ vanishing bearings. In: Schmidt-Koenig K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Berlin Heidelberg New York, pp 143–151Google Scholar
  82. Walcott C, Green RP (1974) Orientation of homing pigeons alterd by a change in the direction of an applied magnet field. Science 184:180–182PubMedGoogle Scholar
  83. Walker MM, Diebel CE, Haugh CV, Pankhurst PM, Montgomery JC Green CR (1997) Structure and function of the vertebrate magnetic sense. Nature 390:371–376CrossRefGoogle Scholar
  84. Williams MN, Wild JM (2001) Trigeminally innervated iron-containing structures in the beak of homing pigeons and other birds. Brain Res 889:243–246CrossRefPubMedGoogle Scholar
  85. Wiltschko W (1978) Further analysis of the magnetic compass of migratory birds. In: Schmidt-König K, Keeton WT (eds) Animal migration, navigation and homing. Springer, Berlin Heidelberg New York, pp 302–310Google Scholar
  86. Wiltschko W, Wiltschko R (1972) Magnetic compass of European Robins. Science 176:62–64Google Scholar
  87. Wiltschko R, Wiltschko W (1978) Evidence for the use of magnetic outward-journey information in homing pigeons. Naturwissenschaften 65:112CrossRefGoogle Scholar
  88. Wiltschko W, Wiltschko R (1981) Disorientation of inexperienced young pigeons after transportation in total darkness. Nature 291:433–434CrossRefGoogle Scholar
  89. Wiltschko W, Wiltschko R (1992) Migratory orientation: magnetic compass orientation of Garden Warblers (Sylvia borin) after a simulated crossing of the magnetic equator. Ethology 91:70–79Google Scholar
  90. Wiltschko R, Wiltschko W (1995) Magnetic Orientation in Animals. Springer, Berlin Heidelberg New YorkGoogle Scholar
  91. Wiltschko W, Wiltschko R (1999) The effect of yellow and blue light on magnetic compass orientation in European Robins, Erithacus rubecula. J Comp Physiol A 184:295–299CrossRefGoogle Scholar
  92. Wiltschko W, Wiltschko R (2001) Light-dependent magnetoreception in birds: the behavior of European Robins, Erithacus rubecula, under monochromatic light of various wavelengths. J Exp Biol 204:3295–3302PubMedGoogle Scholar
  93. Wiltschko W, Wiltschko R (2002) Magnetic compass orientation in birds and its physiological basis. Naturwissenschaften 89:445–452CrossRefPubMedGoogle Scholar
  94. Wiltschko R, Wiltschko W (2003) Avian navigation: from historical to modern concepts. Anim Behav 65:257–272CrossRefGoogle Scholar
  95. Wiltschko W, Munro U, Ford H, Wiltschko R (1993) Red light disrupts magnetic orientation of migratory birds. Nature 364:525–527CrossRefGoogle Scholar
  96. Wiltschko W, Munro U, Beason RC, Ford H, Wiltschko R (1994) A magnetic pulse leads to a temporary deflection in the orientation of migratory birds. Experientia 50:697–700Google Scholar
  97. Wiltschko W, Munro U, Ford H, Wiltschko R (1998) Effect of a magnetic pulse on the orientation of Silvereyes, Zosterops l. lateralis, during spring migration. J Exp Biol 201:3257–3261PubMedGoogle Scholar
  98. Wiltschko W, Wiltschko R, Munro U (2000) Light-dependent magnetoreception in birds: the effect of intensity of 565-nm green light. Naturwissenschaften 87:366–369CrossRefPubMedGoogle Scholar
  99. Wiltschko W, Gesson M, Wiltschko R (2001) Magnetic compass orientatiom of European robins under 565 nm green light. Naturwissenschaften 88:387–390CrossRefPubMedGoogle Scholar
  100. Wiltschko W, Traudt J, Güntürkün O, Prior H, Wiltschko R (2002a) Lateralization of magnetic compass orientation in a migratory bird. Nature 419:467–470CrossRefGoogle Scholar
  101. Wiltschko W, Munro U, Wiltschko W, Kirschvink JL (2002b) Magnetite-based magnetoreception in birds: the effect of a biasing field and a pulse on migratory behavior. J Exp Biol 205:3031–3037Google Scholar
  102. Wiltschko W, Munro U, Ford H, Wiltschko R (2003a) Lateralisation of magnetic compass orientation in silvereyes, Zosterops lateralis. Austr J Zool 51:1–6CrossRefGoogle Scholar
  103. Wiltschko W, Munro U, Ford H, Wiltschko R (2003b) Magnetic orientation in birds: non-compass responses under monochromatic light of increased intensity. Proc R Soc Lond B 270:2133–2140CrossRefGoogle Scholar
  104. Wiltschko W, Möller A, Gesson M, Noll C, Wiltschko R (2004a) Light-dependent magnetoreception in birds analysis of the behaviour under red light after pre-exposure to red light. J Exp Biol 207:1193–1202CrossRefGoogle Scholar
  105. Wiltschko W, Gesson M, Stapput K, Wiltschko R (2004b) Light-dependent magnetoreception in birds: interaction of at least two different receptors. Naturwissenschaften 91:130–134CrossRefGoogle Scholar
  106. Yorke ED (1979) A possible magnetic transducer in birds. J Theor Biol 77:101–105CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Zoologisches Institut der J.W.Goethe-Universität FrankfurtFrankfurt am MainGermany

Personalised recommendations