Journal of Comparative Physiology A

, Volume 192, Issue 5, pp 489–495

Beaked whale auditory evoked potential hearing measurements

  • Mandy L. H. Cook
  • René A. Varela
  • Juli D. Goldstein
  • Stephen D. McCulloch
  • Gregory D. Bossart
  • James J. Finneran
  • Dorian Houser
  • David A. Mann
Original Paper

Abstract

Several mass strandings of beaked whales have recently been correlated with military exercises involving mid-frequency sonar highlighting unknowns regarding hearing sensitivity in these species. We report the hearing abilities of a stranded juvenile beaked whale (Mesoplodon europaeus) measured with auditory evoked potentials. The beaked whale’s modulation rate transfer function (MRTF) measured with a 40-kHz carrier showed responses up to an 1,800 Hz amplitude modulation (AM) rate. The MRTF was strongest at the 1,000 and 1,200 Hz AM rates. The envelope following response (EFR) input–output functions were non-linear. The beaked whale was most sensitive to high frequency signals between 40 and 80 kHz, but produced smaller evoked potentials to 5 kHz, the lowest frequency tested. The beaked whale hearing range and sensitivity are similar to other odontocetes that have been measured.

Keywords

Beaked whale Mesoplodon europaeus Hearing Auditory evoked potential Envelope following response Modulation rate transfer function 

Abbreviations

AM

Amplitude modulation

AEP

Auditory evoked potential

EFR

Envelope following response

EP

Evoked potential

FFT

Fast Fourier transform

MRTF

Modulation rate transfer function

SPL

Sound pressure level

References

  1. Balcomb III KC, Claridge DE (2001) A mass stranding of cetaceans caused by naval sonar in the Bahamas. Bahamas J Sci 8:2–12Google Scholar
  2. Brill RL, Sevenich ML, Sullivan TJ, Sustman JD, Witt RE (1988) Behavioral evidence for hearing through the lower jaw by an echolocating dolphin (Tursiops truncatus). Mar Mammal Sci 4:223–230CrossRefGoogle Scholar
  3. Brill RL, Moore PWB, Dankiewicz LA (2001) Assessment of dolphin (Tursiops truncatus) auditory sensitivity and hearing loss using jawphones. J Acoust Soc Am 109:1717–1722CrossRefPubMedGoogle Scholar
  4. Bullock TH, Grinnell AD, Ikezono E, Kameda K, Katsuki Y, Nomoto M, Sato O, Suga N, Yanagisawa K (1968) Electrophysiological studies of central auditory mechanisms in cetaceans. Z vergleichende Physiol 59:117–156Google Scholar
  5. Corwin JT, Bullock TH, Schweitzer J (1982) The auditory brain stem response in five vertebrate classes. Electroencephalogr Clin Neurophysiol 54:629–641CrossRefPubMedGoogle Scholar
  6. Dolphin WF (1996) Auditory evoked responses to amplitude modulated stimuli consisting of multiple envelope components. J Comp Physiol A 179:113–121CrossRefGoogle Scholar
  7. Dolphin WF (1997) The envelope following response to multiple tone pair stimuli. Hear Res 110:1–14CrossRefPubMedGoogle Scholar
  8. Dolphin WF, Au WWL, Nachtigall PE, Pawloski J (1995) Modulation rate transfer functions to low-frequency carriers in three species of cetaceans. J Comp Physiol A 177:235–245CrossRefGoogle Scholar
  9. Fernández A, Arbelo M, Deaville R, Patterson IAP, Castro P, Baker JR, Degollada E, Ross HM, Herráez P, Pocknell AM, Rodríguez E, Howie FE, Espinosa A, Reid RJ, Jaber JR, Martin V, Cunningham AA, Jepson PD (2004) Pathology: whales, sonar and decompression sickness (reply). Nature 428:1–2CrossRefGoogle Scholar
  10. Ferraro JA, Durrant JD (1994) Auditory evoked potentials: overview and basic principles. In: Katz J (ed) Handbook of clinical audiology. Williams & Wilkins, London, pp 317–338Google Scholar
  11. Finneran JJ, Carder DA, Schlundt CE, Ridgway SH (2005) Temporary threshold shift in bottlenose dolphins (Tursiops truncatus) exposed to mid-frequency tones. J Acoust Soc Am 118:2696–2705CrossRefPubMedGoogle Scholar
  12. Frantzis A (1998) Does acoustic testing strand whales? Nature 392:29CrossRefPubMedGoogle Scholar
  13. Houser DS, Finneran JJ (2005) AEP methods for population-level assessment of hearing sensitivity in bottlenose dolphins. J Acoust Soc Am 117:2408(A)CrossRefGoogle Scholar
  14. Houser DS, Finneran JJ, Carder DA, Ridgway SH, Moore PW (2004) Relationship between auditory evoked potential (AEP) and behavioral audiograms in odontocete cetaceans. J Acoust Soc Am 116:2503(A)Google Scholar
  15. Jepson PD, Arbelo M, Deaville R, Patterson IAP, Castro P, Baker JR, Degollada E, Ross HM, Herráez P, Pocknell AM, Rodríguez R, Howie FE, Espinosa A, Reid RJ, Jaber JR, Martin V, Cunningham AA, Fernández A (2003) Gas-bubble lesions in stranded cetaceans: was sonar responsible for a spate of whale deaths after an Atlantic military exercise? Nature 425:575–576CrossRefPubMedGoogle Scholar
  16. Johnson CS (1966) Auditory thresholds of the bottlenosed porpoise (Tursiops truncatus, Montagu). US Naval Ordinance Test Station (NOTS) TP 4178, 22 ppGoogle Scholar
  17. Johnson M, Madsen PT, Zimmer WMX, Aguilar de Soto N, Tyack PL (2004) Beaked whales echolocate on prey. Proc R Soc Lond B (Suppl) 271:S383–S386CrossRefGoogle Scholar
  18. Lucas JR, Freeberg TM, Krishnan A, Long GR (2002) A comparative study of avian auditory brainstem responses: correlations with phylogeny and vocal complexity, and seasonal effects. J Comp Physiol A 188:981–992CrossRefGoogle Scholar
  19. McCormick JG, Wever EG, Palin J (1970) Sound conduction in the dolphin ear. J Acoust Soc Am 48:1418–1428CrossRefPubMedGoogle Scholar
  20. McCormick JG, Wever EG, Ridgway SH, Palin J (1979) Sound reception in the porpoise as it relates to echolocation. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum, New York, pp 449–467Google Scholar
  21. Møhl B, Au WWL, Pawloski J, Nachtigall PE (1999) Dolphin hearing: relative sensitivity as a function of point of application of a contact sound source in the jaw and head region. J Acoust Soc Am 105:3421–3424CrossRefPubMedGoogle Scholar
  22. Moore PWB, Pawloski DA (1993) Interaural time discrimination in the bottlenose dolphin. J Acoust Soc Am 94:1829(A)–1830(A)Google Scholar
  23. Nachtigall PE, Lemonds DW, Roitblat HL (2000) Psychoacoustic studies of dolphin and whale hearing. In: Au WWL, Popper AN, Fay RR (eds) Hearing by whales and dolphins. Springer, Berlin Heidelberg New York, pp 330–363Google Scholar
  24. Norris KS (1964) Some problems of echolocation in cetaceans. In: Tavolga WN (ed) Marine bioacoustics. Pergamon, New York, pp 317–336Google Scholar
  25. Norris KS (1968) The evolution of acoustic mechanisms in odontocete cetaceans. In: Drake ET (ed) Evolution and environment. Yale University Press, London, pp 297–324Google Scholar
  26. Popov VV, Supin AY (1990) Auditory brain stem responses in characterization of dolphin hearing. J Comp Physiol A 166:385–393CrossRefPubMedGoogle Scholar
  27. Ridgway SH, Bullock TH, Carder DA, Seeley RL, Woods D, Galambos R (1981) Auditory brainstem response in dolphins. Neurobiology 78:1943–1947Google Scholar
  28. Simmonds MP, Lopez-Jurado LF (1991) Whales and the military. Nature 351:448CrossRefGoogle Scholar
  29. Supin AY, Popov VV, Mass AM (2001) The sensory physiology of aquatic mammals. Kluwer, LondonGoogle Scholar
  30. Szymanski MD, Bain DE, Kiehl K, Pennington S, Wong S, Henry KR (1999) Killer whale (Orcinus orca) hearing: auditory brainstem response and behavioral audiograms. J Acoust Soc Am 106:1134–1141CrossRefPubMedGoogle Scholar
  31. US Department of Commerce and US Navy (2001) Joint interim report: Bahamas marine mammal stranding event of 15–16 March 2000 http://www.nmfs.noaa.gov/prot_res/overview/Interim_Bahamas_Report.pdf
  32. Yuen MML, Nachtigall PE, Breese M, Supin AY (2005) Behavioral and auditory evoked potential audiograms of a false killer whale (Pseucorca crassidens). J Acoust Soc Am 118:2688–2695CrossRefPubMedGoogle Scholar
  33. Zimmer WMX, Johnson MP, Madsen PT, Tyack PL (2005) Echolocation clicks of free-ranging Cuvier’s beaked whales (Ziphius cavirostris). J Acoust Soc Am 117:3919–3927CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Mandy L. H. Cook
    • 1
  • René A. Varela
    • 2
  • Juli D. Goldstein
    • 2
  • Stephen D. McCulloch
    • 2
  • Gregory D. Bossart
    • 2
  • James J. Finneran
    • 3
  • Dorian Houser
    • 4
  • David A. Mann
    • 1
  1. 1.College of Marine ScienceUniversity of South FloridaSt. PetersburgUSA
  2. 2.Harbor Branch Oceanographic Institution, Inc.Fort PierceUSA
  3. 3.US Navy Marine Mammal Program, Space and Naval Warfare Systems CenterSan DiegoUSA
  4. 4.BiomimeticaSanteeUSA

Personalised recommendations