Journal of Comparative Physiology A

, Volume 192, Issue 3, pp 321–331

Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area

  • Julia Stalleicken
  • Thomas Labhart
  • Henrik Mouritsen
Original Paper

Abstract

The spectral, angular and polarization sensitivities of photoreceptors in the compound eye of the monarch butterfly (Danaus plexippus) are examined using electrophysiological methods. Intracellular recordings reveal a spectrally homogenous population of UV receptors with optical axes directed upwards and ≥10° to the contralateral side. Based on optical considerations and on the opsin expression pattern (Sauman et al. 2005), we conclude that these UV receptors belong to the anatomically specialized dorsal rim area (DRA) of the eye. Photoreceptors in the main retina with optical axes <10° contralateral or ipsilateral have maximal sensitivities in the UV (λmax≤340 nm), the blue (λmax=435 nm) or in the long-wave range (green, λmax=540 nm). The polarization sensitivity (PS) of the UV receptors in the DRA is much higher (PS=9.4) than in the UV cells (PS=2.9) or green cells (PS=2.8) of the main retina. The physiological properties of the photoreceptors in the DRA and in the main retina fit closely with the anatomy and the opsin expression patterns described in these eye regions. The data are discussed in the light of present knowledge about polarized skylight navigation in Lepidopterans.

Keywords

Danaus plexippus Compound eye Dorsal rim area Polarization sensitivity Spectral sensitivity 

Abbreviations

DA

Dorsal area

DRA

Dorsal rim area

ERG

Electroretinogram

PS

Polarization sensitivity

References

  1. Aepli F, Labhart T, Meyer E P (1985) Structural specializations of the cornea and retina at the dorsal rim of the compound eye in hymenopteran insects. Cell Tissue Res 239:19–24CrossRefGoogle Scholar
  2. Anton-Erxleben F, Langer H (1988) Functional morphology of the ommatidia in the compound eye of the moth, Antheraea polyphemus (Insecta, Saturniidae). Cell Tissue Res 252:385–396CrossRefPubMedGoogle Scholar
  3. Barta A, Horvath G (2004) Why is it advantageous for animals to detect celestial polarization in the ultraviolet? Skylight polarization under clouds and canopies is strongest in the UV. J Theor Biol 226:429–437CrossRefPubMedGoogle Scholar
  4. Blum M, Labhart T (2000) Photoreceptor visual fields, ommatidial array, and receptor axon projections in the polarisation-sensitive dorsal rim area of the cricket compound eye. J Comp Physiol A 186:119–128CrossRefPubMedGoogle Scholar
  5. Briscoe AD, Bernard GD, Szeto AS, Nagy LM, White RH (2003) Not all butterfly eyes are created equal: Rhodopsin absorption spectra, molecular identification, and localization of ultraviolet-, blue-, and green-sensitive rhodopsin-encoding mRNAs in the retina of Vanessa cardui. J Comp Neurol 458:334–349CrossRefPubMedGoogle Scholar
  6. Briscoe AD, Bernard GD (2005) Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species. J Exp Biol 208:687–696CrossRefPubMedGoogle Scholar
  7. Burghause FMHR (1979) Structural specialization in the dorso-frontal region of the cricket compound eye (Orthoptera, Grylloidea). Zool Jb Physiol 83:502–525Google Scholar
  8. Burkhardt D, Streck P (1965) Das Sehfeld einzelner Sehzellen: Eine Richtigstellung. Z Vergl Physiol 51:151–152Google Scholar
  9. Coemans MAJM, Vos HJJ, Nuboer JFW (1994) The relation between celestial colour gradients and the position of the sun, with regard to the sun compass. Vis Res 34:1461–1470CrossRefPubMedGoogle Scholar
  10. Coulson KL (1988) Polarization and intensity of light in the atmosphere. A Deepak Publishing, HamptonGoogle Scholar
  11. Duelli P, Wehner R (1973) The spectral sensitivity of polarized light orientation in Cataglyphis bicolor (Formicidae, Hymenoptera). J Comp Physiol 86:37–53CrossRefGoogle Scholar
  12. Dacke M, Nordstrom P, Scholtz CH, Warrant EJ (2002) A specialized dorsal rim area for polarized light detection in the compound eye of the scarab beetle Pachysoma striatum. J Comp Physiol A 188:211–216CrossRefGoogle Scholar
  13. Eguchi E, Watanabe K, Hariyama T, Yamamoto K (1982) A comparison of electrophysiologically determined spectral responses in 35 species of Lepidoptera. J Insect Physiol 28:675–682CrossRefGoogle Scholar
  14. Froy O, Gotter AL, Casselman AL, Reppert SM (2003) Illuminating the circadian clock in monarch butterfly migration. Science 300:1303–1305CrossRefPubMedGoogle Scholar
  15. Hämmerle B, Kolb G (1996) Retinal ultrastructure of the dorsal eye region of Pararge aegeria (Linné) (Lepidoptera: Satyridae). Int J Insect Morphol 25:305–315CrossRefGoogle Scholar
  16. Hardie RC (1984) Properties of photoreceptor-R7 and photoreceptor-R8 in dorsal marginal ommatidia in the compound eyes of Musca and Calliphora. J Comp Physiol 154:157–165CrossRefGoogle Scholar
  17. Von Helversen O, Edrich W (1974) Der Polarisationsempfänger im Bienenauge: ein Ultraviolettrezeptor. J Comp Physiol 94:33–47CrossRefGoogle Scholar
  18. Herzmann D, Labhart T (1989) Spectral sensitivity and absolute threshold of polarization vision in crickets: a behavioral study. J Comp Physiol A 165:315–319CrossRefGoogle Scholar
  19. Homberg U, Paech A (2002) Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. Arthropod Struct Dev 30:271–280CrossRefPubMedGoogle Scholar
  20. Homberg U (2004) In search of the sky compass in the insect brain. Naturwissenschaften 91:199–208CrossRefPubMedGoogle Scholar
  21. Kolb G (1985) Ultrastructure and adaptation in the retina of Aglais urticae (Lepidoptera). Zoomorphology 105:90–98CrossRefGoogle Scholar
  22. Kolb G (1986) Retinal ultrastructure in the dorsal rim and large dorsal area of the eye of Aglais urticae (Lepidoptera). Zoomorphology 106:244–246CrossRefGoogle Scholar
  23. Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybee’s compound eye—polarizational and angular sensitivity. J Comp Physiol 141:19–30CrossRefGoogle Scholar
  24. Labhart T, Hodel B, Valenzuela I (1984) The physiology of the cricket’s compound eye with particular reference to the anatomically specialized dorsal rim area. J Comp Physiol 155:289–296CrossRefGoogle Scholar
  25. Labhart T (1986) The electrophysiology of photoreceptors in different eye regions of the desert ant, Cataglyphi bicolor. J Comp Physiol A 158:1–7CrossRefGoogle Scholar
  26. Labhart T, Meyer EP, Schenker L (1992) Specialized ommatidia for polarization vision in the compound eye of cockchafers, Melolontha melolontha (Coleoptera, Scarabaeidae). Cell Tissue Res 268:419–429CrossRefPubMedGoogle Scholar
  27. Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microscop Res Techn 47:368–379CrossRefGoogle Scholar
  28. Labhart T (1999) How polarization-sensitive interneurones of crickets see the polarization pattern of the sky: a field study with an optoelectronic model neurone. J Exp Biol 202:757–770PubMedGoogle Scholar
  29. Labhart T, Petzold J, Helbling H (2001) Spatial integration in polarization-sensitive interneurones of crickets: a survey of evidence, mechanisms and benefits. J Exp Biol 204:2423–2430PubMedGoogle Scholar
  30. Labhart T, Baumann F (2003). Evidence for a polarization compass in monarch butterflies. Proc Neurobiol Conf Göttingen 29:545Google Scholar
  31. Mappes M, Homberg U (2004) Behavioral analysis of polarization vision in tethered flying locusts. J Comp Physiol A 190:61–68CrossRefGoogle Scholar
  32. Meinecke CC (1981) The fine-structure of the compound eye of the African armyworm moth, Spodoptera exempta Walk (Lepidoptera, Noctuidae). Cell Tissue Res 216:333–347CrossRefPubMedGoogle Scholar
  33. Meyer E P, Labhart T (1981) Pore canals in the cornea of a functionally specialized area of the honey bee’s compound eye. Cell Tissue Res 216:491–501CrossRefPubMedGoogle Scholar
  34. Meyer E P, Labhart T (1993) Morphological specializations of dorsal rim ommatidia in the compound eye of dragonflies and damselflies (Odonata). Cell Tissue Res 272:17–22CrossRefGoogle Scholar
  35. Mouritsen H, Frost B J (2002) Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms. Proc Natl Acad Sci USA 99:10162–10166CrossRefPubMedGoogle Scholar
  36. Nilsson D E, Labhart T, Meyer E P (1987) Photoreceptor design and optical properties affecting polarization sensitivity in ants and crickets. J Comp Physiol A 161:645–658CrossRefGoogle Scholar
  37. Perez S M, Taylor O R, Jander R (1997) A sun compass in monarch butterflies. Nature 387:29CrossRefGoogle Scholar
  38. Von Philipsborn A, Labhart T (1990) A behavioral study of polarization vision in the fly, Musca domestica. J Comp Physiol A 167:737–743CrossRefGoogle Scholar
  39. Reppert SM, Zhu H, White RH (2004). Polarized light helps monarch butterflies navigate. Curr Biol 14:155–158CrossRefPubMedGoogle Scholar
  40. Seliger HH, Lall AB, Biggley WH (1994) Blue through UV polarization sensitivities in insects: optimizations for the range of atmospheric polarization conditions. J Comp Physiol A 175:475–486CrossRefGoogle Scholar
  41. Sauman I, Briscoe AD, Zhu HS, Shi DD, Froy O, Stalleicken J, Yuan Q, Casselman A, Reppert SM (2005) Connecting the navigational clock to sun compass input in monarch butterfly brain. Neuron 46:457–467CrossRefPubMedGoogle Scholar
  42. Stalleicken J, Mukhida M, Labhart T, Wehner R, Frost B, Mouritsen H (2005). Do monarch butterflies use polarized skylight for migratory orientation? J Exp Biol 208:2399–2408CrossRefPubMedGoogle Scholar
  43. Stavenga DG, Smits RP, Hoenders BJ (1993) Simple exponential functions describing the absorbency bands of visual pigment spectra. Vis Res 33:1011–1017CrossRefPubMedGoogle Scholar
  44. Ukhanov KY, Leertouwer HL, Gribakin FG, Stavenga DG (1996) Dioptrics of the facet lenses in the dorsal rim area of the cricket Gryllus bimaculatus. J Comp Physiol A 179:545–552CrossRefGoogle Scholar
  45. Wehner R, Bernard GD, Geiger E (1975) Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee. J Comp Physiol 104:225–245CrossRefGoogle Scholar
  46. Wehner R (1982) Himmelsnavigation bei Insekten Neurophysiologie und Verhalten. Neujahrsbl Naturforsch Ges Zürich 184:1–132Google Scholar
  47. Wehner R (1984) Astronavigation in insects. Annu Rev Entomol 29:277–298Google Scholar
  48. Wehner R, Bernard GD (1993) Photorecptor twist: a solution to the false-color problem. Proc Natl Acad Sci USA 90:4132–4235PubMedCrossRefGoogle Scholar
  49. Wehner R (1994) The polarization-vision project: championing organismic biology. In: Schildberger K, Elsner N (eds) Neural basis of behavioural adaption. G Fischer, Stuttgart, pp 103–143Google Scholar
  50. Wehner R (1996) Polarisationsmusteranalyse bei Insekten. Nova Acta Leopoldina NF 72:159–183Google Scholar
  51. Wehner R (1997) The ant’s celestial compass system: spectral and polarization channels. In: Lehrer M (eds) Orientation and communication in Arthropods. Birkhäuser, Basel, pp 145–185Google Scholar
  52. Wehner R, Labhart T (2005) Polarization vision. In: Warrant E, Nilsson D-E (eds) Invertebrate vision. Cambridge University Press (in press)Google Scholar
  53. White RH, Xu HH, Munch TA, Bennett RR, Grable EA (2003) The retina of Manduca sexta: rhodopsin expression, the mosaic of green-, blue- and UV-sensitive photoreceptors, and regional specialization. J Exp Biol 206:3337–3348CrossRefPubMedGoogle Scholar
  54. Wolf R, Gebhardt B, Gademann R, Heisenberg M (1980) Polarization sensitivity of course control in Drosophila melanogaster. J Comp Physiol 139:177–191CrossRefGoogle Scholar
  55. Zufall F, Schmitt M, Menzel R (1989) Spectral and polarized-light sensitivity of photoreceptors in the compound eye of the cricket (Gryllus bimaculatus). J Comp Physiol A 164:597–608PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Julia Stalleicken
    • 1
  • Thomas Labhart
    • 2
  • Henrik Mouritsen
    • 1
  1. 1.VW Nachwuchsgruppe Animal Navigation, IBUUniversity of OldenburgOldenburgGermany
  2. 2.Zoological InstituteUniversity of ZürichZürichSwitzerland

Personalised recommendations