Ossicular differentiation of airborne and seismic stimuli in the Cape golden mole (Chrysochloris asiatica)

Original Paper

Abstract

Comparison between the middle ear anatomy of the Cape golden mole (Chrysochloris asiatica), which exhibits a club-shaped malleus head, and the Desert golden mole (Eremitalpa granti), with a ball-shaped malleus head, suggests differences in sensitivity to airborne sound. Scanning laser Doppler vibrometric measurements of the ossicular behavior in response to both vibration and airborne sound were made in C. asiatica. Two distinct vibrational modes were observed. In response to low-frequency vibration (70–200 Hz), the malleus oscillates about the ligament of the short process of the incus, whereas in response to high-frequency airborne sound (1–6 kHz) the ossicular chain rotates about the long axis of malleus. It is proposed that the club-shaped malleus head in C. asiatica constitutes an adaptation towards bimodal hearing—sensitivity to substrate vibrations and airborne sound. Possible functional differences between these two middle ear types are discussed.

Keywords

Middle ear Bimodal Sound Vibration Chysochloridae 

Abbreviations

APM

Anterior process of the malleus

LPI

Lenticular process of the incus

SLDV

Scanning laser Doppler vibrometer

SPI

Short process of the incus

TM

Tympanic membrane

References

  1. Aicher B, Tautz J (1990) Vibration communication in the fiddler crab, Uca pugilator. J Comp Physiol A 166:345–353CrossRefGoogle Scholar
  2. Armstrong J, Quilliam TA (1961) Nerve endings in the mole’s snout. Nature 191:1379–1380PubMedCrossRefGoogle Scholar
  3. Barany E (1938) A contribution to the physiology of bone conduction. Acta Oto-Laryngol Suppl 26:1–233Google Scholar
  4. Bennett NC, Faulkes CG (2000) African mole-rats: ecology and eusociality. Cambridge University Press, CambridgeGoogle Scholar
  5. Bronchti G, Heil P, Scheich H, Wollberg Z (1989) Auditory pathway and auditory activation of primary visual targets in the blind mole rat (Spalax ehernbergi): I 2-deoxyglucose study of subcortical centers. J Comp Neurol 284:253–274CrossRefPubMedGoogle Scholar
  6. Broom R (1927) Some further points on the structure of the mammalian basicranial axis. Proc Zool Soc Lond 1927:233–244Google Scholar
  7. Brownell PH, van Hemmen JL (2001) Vibration sensitivity and a computational theory for prey-localizing behavior in sand scorpions. Am Zool 41:1229–1240CrossRefGoogle Scholar
  8. Brückmann G, Bruda H (1997) Hearing in blind subterranean Zambian mole-rats (Cryptomys sp): collective behavioral audiogram in a highly social rodent. J Comp Physiol A 181:83–88CrossRefPubMedGoogle Scholar
  9. Burda H, Burns V, Müller M (1990) Sensory adaptation in subterranean mammals. In: Nevo E, Reig OA (eds) Evolution of subterranean mammals at the organismal and molecular levels. Wiley-Liss, New York, pp 269–293Google Scholar
  10. Capranica RR, Nevo E, Moffat AJM (1974) Vocal repertoire of a subterranean rodent (Spalax). J Acoust Soc Am 55:481Google Scholar
  11. Catania KC, Kaas JH (1996) The unusual nose and brain of the star-nosed mole. Bioscience 46:578–586CrossRefGoogle Scholar
  12. Cooper FC (1928) On the ear region of certain of the Chrysochloridae. Phil Trans A Soc [Biol] 216:265–283CrossRefGoogle Scholar
  13. Credner S, Burda H, Ludescher E (1997) Acoustic communication underground: Vocalization characteristics in subterranean social mole-rats (Cryptomys sp., Bathyergidae). J Comp Physiol A 180:245–255CrossRefPubMedGoogle Scholar
  14. Doran AHG (1878) On the morphology of the mammalian ossicula auditus. Trans Linn Soc Lond Ser 2 1:371–498Google Scholar
  15. Ferrazzini M (2003) Virtual middle ear: a dynamic mathematical model based on the finite element method. Unpublished doctoral thesis, University of ZürichGoogle Scholar
  16. Fielden LJ (1990) Home range movements of the Namib Desert golden mole, Eremitalpa granti namibensis (Chrysochloridae). J Zool London 223:675–686Google Scholar
  17. Fleischer G (1974) On a mechanical model of a bat’s middle ear. J Acoust Res 3:1–75CrossRefGoogle Scholar
  18. Fleischer G (1978) Evolutionary principles of the mammalian middle ear. Adv Ant Embryol Cell Biol 55:1–70Google Scholar
  19. Francescoli G (2000) Sensory capabilities and communication in subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life underground: The biology of subterranean rodents. The University of Chicago Press, Chicago, pp 111–144Google Scholar
  20. Heffner RS, Heffner HE (1990) Vestigial hearing in a fossorial mammal, the pocket gopher (Geomys bursarius). Hear Res 46:239–252CrossRefPubMedGoogle Scholar
  21. Heffner RS, Heffner HE (1992) Hearing and sound localization in blind mole rats (Spalax ehrenbergi). Hear Res 62:206–216CrossRefPubMedGoogle Scholar
  22. Heffner RS, Heffner HE (1993) Degenerate hearing and sound localization in naked mole rats (Heterocephalus glaber), with an overview of central auditory structures. J Comp Neurol 331:418–433CrossRefPubMedGoogle Scholar
  23. Henson OW (1974) Comparative anatomy of the middle ear. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology V/1, auditory system. Springer, New York, Berlin, Heidelberg, pp 39–110Google Scholar
  24. Heth G, Frankenberg E, Nevo E (1986) Adaptive optimal sound for vocal communication in tunnels of a subterranean mammal (Spalax ehrenbergi). Experientia 42:1287–1289CrossRefPubMedGoogle Scholar
  25. Hickman GC (1990) The Chrysochloridae: studies toward a broader perspective of adaptation in subterranean mammals. In: Nevo E, Reig OA (eds) Evolution of subterranean mammals at the organismal and molecular levels. Wiley-Liss, New-York, pp 23–48Google Scholar
  26. Hill PSM, Shadley JR (2001) Talking back: sending signals to lekking prairie mole cricket males. Am Zool 41:1200–1214CrossRefGoogle Scholar
  27. Hyrtl J (1845) Vergleichend-anatomische Untersuchungen über das innere Gehörorgan des Menschen und der Säugethiere. Friedrich Ehrlich Verlag, PragueGoogle Scholar
  28. Klauer G, Burda H, Nevo E (1997) Adaptive differentiation of the skin of the head in a subterranean rodent, Spalax ehrenbergi. J Morph 233:53–66CrossRefPubMedGoogle Scholar
  29. Kuyper MA (1984) Golden moles. In: MacDonald D (ed) The encyclopedia of mammals V/2. Allen & Unwin, London, pp 764–765Google Scholar
  30. Lombard RE, Hetherington TE (1993) Structural basis of hearing and sound transmission. In: Hanken J, Hall BK (eds) The skull V/3. University of Chicago Press, Chicago, pp 241–302Google Scholar
  31. Mason MJ (1998) Functional anatomy of the middle ear of insectivores. J Acoust Soc Am 103:2827CrossRefGoogle Scholar
  32. Mason MJ (1999) The functional anatomy of the middle ear of mammals, with an emphasis on fossorial forms. Unpublished doctoral thesis, University Press of CambridgeGoogle Scholar
  33. Mason MJ (2003a) Morphology of the middle ear of golden moles (Chrysochloridae). J Zool 260:391–403CrossRefGoogle Scholar
  34. Mason MJ (2003b) Bone conduction and seismic sensitivity in golden moles (Chrysochloridae). J Zool 260:405–413CrossRefGoogle Scholar
  35. Mason MJ, Narins PM (2002) Seismic sensitivity in the desert golden mole (Eremitalpa granti). J Comp Psychol 116:158–163CrossRefPubMedGoogle Scholar
  36. Narins PM, Lewis ER, Jarvis JJUM, O’Riain J (1997) The use of seismic signals by fossorial southern African mammals: A neuroethological gold mine. Brain Res Bull 44:641–646CrossRefPubMedGoogle Scholar
  37. Narins PM, Reichman OJ, Jarvis JUM, Lewis ER (1992) Seismic signal transmission between burrows of the Cape mole-rat, Georychus capensis. J Comp Physiol A 170:13–21CrossRefPubMedGoogle Scholar
  38. Nevo E, Heth G, Pratt H (1991) Seismic communication in a blind subterranean mammal: a major somatosensory mechanism in adaptive evolution underground. Proc Nat Acad Sci USA 88:1256–1260PubMedCrossRefGoogle Scholar
  39. Nowak RM (1999) Walker’s mammals of the world, 6th edn. Johns Hopkins University Press, BaltimoreGoogle Scholar
  40. Pepper JW, Braude SH, Lacey EA, Sherman PW (1991) Vocalization of the naked mole-rat. In: Sherman PW, Jarvis JUM, Alexander RD (eds) The biology of the naked mole-rat. Princeton University Press, Princeton, pp 243–274Google Scholar
  41. Quilliam TA (1966a) The mole’s sensory apparatus. J Zool 149:76–88CrossRefGoogle Scholar
  42. Quilliam TA (1966b) Unit design and array patterns in receptor organs. In: Knight J, Reuck A (eds) Touch, heat and pain. Ciba Foundation Symposium, London, pp 86–116Google Scholar
  43. Rado R, Himelfarb M, Arensburg B, Terkel J, Wollberg Z (1989) Are seismic communication signals transmitted by bone conduction in the blind mole rat? Hear Res 41:23–30CrossRefPubMedGoogle Scholar
  44. Saunders JC, Summers RM (1982) Auditory structure and function in the mouse middle ear: an evaluation by SEM and capacitive probe. J Comp Physiol 146:517–525CrossRefGoogle Scholar
  45. Schön F, Müller J (1999) Measurements of the ossicular vibrations in the middle ear. Audiol Neurootol 4:142–149CrossRefPubMedGoogle Scholar
  46. Skinner JD, Smithers RHN (1990) The mammals of the Southern African subregion, 2nd edn. University of Pretoria, PretoriaGoogle Scholar
  47. Van der Vyver Nolte H (1968) The external morphology and functional anatomy of the cranial region in the Namib golden mole Eremitalpa granti namibensis Bauer und Niethammer, 1959. MSc Thesis, University of PretoriaGoogle Scholar
  48. Von Dohlen P (1981) Untersuchungen zum Vibrationssinn der Feldgrille. PhD Thesis. Mathematical Science FacultyGoogle Scholar
  49. Von Meyer A, O’Brien G, Sarmiento EE (1995) Functional and systematic implications of the ear in golden moles (Chrysochloridae). J Zool London 236:417–430CrossRefGoogle Scholar
  50. Willi UB (2003) Middle ear mechanics: The dynamic behavior of the incudo-mallear joint and its role during the transmission of sound. Unpublished doctoral thesis. University of ZürichGoogle Scholar
  51. Willi UB, Bronner GN, Narins PM (2006) Middle ear dynamic in response to seismic stimuli in the Cape golden mole (Chrysochloris asiatica). J Exp Biol (submitted)Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of Physiological ScienceUniversity of California at Los AngelesLos AngelesUSA
  2. 2.Department of ZoologyUniversity of Cape TownCape TownRepublic of South Africa
  3. 3.Department of Physiological Science and Department of Ecology & Evolutionary BiologyUniversity of California at Los AngelesLos AngelesUSA

Personalised recommendations