Journal of Comparative Physiology A

, Volume 192, Issue 2, pp 135–150 | Cite as

An in vitro study of long-term potentiation in the carp (Cyprinus carpio L.) olfactory bulb



Long-term potentiation (LTP) of synaptic transmission is considered a cellular mechanism for neural plasticity and memory formation. Previously, we showed that in the carp olfactory bulb, LTP occurs at the dendrodendritic mitral-to-granule cell synapse following tetanic electrical stimulation applied to the olfactory tract, and suggested that it is involved in the process of olfactory memory formation. As a first step towards understanding mechanisms underlying plasticity at this synapse, we examined the effects of various drugs (glutamate and GABA receptor agonists and antagonists, noradrenaline, and drugs affecting cAMP signaling) on dendrodendritic mitral-to-granule cell synaptic transmission in an in vitro preparation. Two forms of LTP are involved: a postsynaptic form (tetanus-evoked LTP) and a presynaptic form. The postsynaptic form is evoked at the granule cell dendrite following tetanic olfactory tract stimulation and is suppressed by the NMDA receptor antagonist, D-AP5, enhanced by noradrenaline, and occluded by the metabotropic glutamate receptor agonist, trans-ACPD. The presynaptic form occurs at the mitral cell dendrite following blockade of the GABAA receptor by picrotoxin and bicuculline, or via activation of cAMP signaling by forskolin and 8-Br-cAMP.


Long-term potentiation Dendrodendritic mitral-to-granule cell synapse Olfactory bulb Carp In vitro preparation 



Artificial cerebrospinal fluid


8-Bromoadenosine 3′,5′-cyclic monophosphate


Component 2 wave




D-(-)-2-amino-5-phosphono-valeric acid


Dimethyl sufoxide


γ-Aminobutylic acid


Granule cell




Ionotropic glutamate receptor


Long-term depression


Long-term potentiation


Mitral cell


Metabotropic glutamate receptor




Olfactory bulb


Olfactory tract


Paired-pulse depression


Paired-pulse facilitation




trans-ACPD/(±)-1-Aminocyclopentane-trans-1,3-dicarboxylic acid



This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan and from the Ministry of Agriculture, Forestry and Fisheries of Japan. All experiments comply with the Animal Care and Use Committee guidelines of Yokohama City University and with the regulations for the care and use of laboratory animals in Japan.


  1. Anglade I, Mazurais D, Douard V, Jossic-Corcos CL, Mañanos EL, Michel D, Kah O (1999) Distribution of glutamic acid decarboxylase mRNA in the forebrain of the rainbow trout as studied by in situ hybridization. J Comp Neurol 410:277–289PubMedCrossRefGoogle Scholar
  2. Bashir ZI, Bortolotto ZA, Davies CH, Berretta N, Irving AJ, Seal AJ, Henley JM, Jane DE, Watkins JC, Collingridge GL (1993) Induction of LTP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 363:347–350PubMedCrossRefGoogle Scholar
  3. Baskys A, Malenka RC (1991) Agonists at metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus. J Physiol 444:687–701PubMedGoogle Scholar
  4. Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4:389–399PubMedCrossRefGoogle Scholar
  5. Bell CC, Han VZ, Sugawara Y, Grant K (1997) Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387:278–281PubMedCrossRefGoogle Scholar
  6. Bliss TVP, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39PubMedCrossRefGoogle Scholar
  7. Bortolotto ZA, Bashir ZI, Davies CH, Collingridge GL (1994) A molecular switch activated by metabotropic glutamate receptors regulates induction of long-term potentiation. Nature 368:740–743PubMedCrossRefGoogle Scholar
  8. Bortolotto ZA, Fitzjohn SM, Collingridge GL (1999) Roles of metabotropic glutamate receptors in LTP and LTD in the hippocampus. Curr Opin Neurobiol 9:299–304PubMedCrossRefGoogle Scholar
  9. Brennan PA, Keverne EB (1997) Neural mechanisms of mammalian olfactory learning. Prog Neurobiol 51:457–481PubMedCrossRefGoogle Scholar
  10. Brennan P, Kaba H, Keverne EB (1990) Olfactory recognition: a simple memory system. Science 250:1223–1226PubMedCrossRefGoogle Scholar
  11. Castillo PE, Janz R, Südhof TC, Tzounopoulos T, Malenka RC, Nicoll RA (1997) Rab3A is essential for mossy fiber long-term potentiation in the hippocampus. Nature 388:590–593PubMedCrossRefGoogle Scholar
  12. Castillo PE, Schoch S, Schmitz F, Südhof TC, Malenka RC (2002) RIM1α is required for presynaptic long-term potentiation. Nature 415:327–330PubMedCrossRefGoogle Scholar
  13. Chen WR, Xiong W, Shepherd GM (2000) Analysis of relations between NMDA receptors and GABA release at olfactory bulb reciprocal synapses. Neuron 25:625–633PubMedCrossRefGoogle Scholar
  14. Döving KB (1986) Functional properties of the fish olfactory system. In: Autrum H, Ottoson D, Perl ER, Schmidt RF, Shimazu H, Willis WD (eds) Progress in sensory physiology 6. Springer, Berlin, Heidelberg, New York, Tokyo, pp 39–104Google Scholar
  15. Edwards JG, Michel WC (2002) Odor-stimulated glutamatergic neurotransmission in the zebrafish olfactory bulb. J Comp Neurol 454:294–309PubMedCrossRefGoogle Scholar
  16. Edwards JG, Michel WC (2003) Pharmacological characterization of ionotropic glutamate receptors in the zebrafish olfactory bulb. Neuroscience 122:1037–1047PubMedCrossRefGoogle Scholar
  17. Egger V, Soboda K, Mainen ZF (2003) Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells. J Neurosci 23:7551–7558PubMedGoogle Scholar
  18. Ekström P, Reschke M, Steinbusch HWM, van Veen T (1986) Distribution of noradrenaline in the brain of the teleost Gasterosteus aculeatus L: an immunohistochemical analysis. J Comp Neurol 254:297–313PubMedCrossRefGoogle Scholar
  19. Halabisky B, Friedman D, Radojicic M, Strawbridge BW (2000) Calcium influx through NMDA receptors directly evokes GABA release in olfactory bulb granule cells. J Neurosci 20:5124–5134PubMedGoogle Scholar
  20. Hall BJ, Delaney KR (2002) Contribution of a calcium-activated non-specific conductance to NMDA receptor-mediated synaptic potentials in granule cells of the frog olfactory bulb. J Physiol 543:819–834PubMedCrossRefGoogle Scholar
  21. Hara TJ (1992) Fish chemoreception. Chapman and Hall, London, p 373Google Scholar
  22. Hawkins RD, Kandel ER, Siegelbaum SA (1993) Learning to modulate transmitter release: themes and variations in synaptic plasticity. Annu Rev Neurosci 16:625–665PubMedCrossRefGoogle Scholar
  23. Hayashi Y, Momiyama A, Takahashi T, Ohishi H, Ogawa-Meguro R, Shigemoto R, Mizuno N, Nakanishi S (1993) Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb. Nature 366:687–690PubMedCrossRefGoogle Scholar
  24. Hoshikawa R, Sato Y, Satou M (2000) An in vitro study of long-term potentiation in the carp olfactory bulb. In: Kato T (ed) Frontiers of the mechanisms of memory and dementia. Elsevier, Amsterdam, pp 27–28Google Scholar
  25. Huang G-Z, Kaba H (2001) Electrophysiological correlates of pheromonal memory. Neurosci Res 25(Suppl):S74Google Scholar
  26. Huang Y-Y, Li X-C, Kandel ER (1994) cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell 79:69–79PubMedCrossRefGoogle Scholar
  27. Huang Y-Y, Nguyen PV, Abel T, Kandel ER (1996) Long-lasting forms of synaptic potentiation in the mammalian hippocampus. Learn Mem 3:74–85PubMedCrossRefGoogle Scholar
  28. Isaacson JS (2001) Mechanisms governing dendritic γ-aminobutyric acid (GABA) release in the rat olfactory bulb. Proc Natl Acad Sci USA 98:337–342PubMedCrossRefGoogle Scholar
  29. Isaacson JS, Strawbridge BW (1998) Olfactory reciprocal synapses: dendritic signaling in the CNS. Neuron 20:749–761PubMedCrossRefGoogle Scholar
  30. Jahr CE, Nicoll RA (1982a) Noradrenergic modulation of dendrodendritic inhibition in the olfactory bulb. Nature 297:227–229PubMedCrossRefGoogle Scholar
  31. Jahr CE, Nicoll RA (1982b) An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. J Physiol 326:213–234PubMedGoogle Scholar
  32. Kaba H, Nakanishi S (1995) Synaptic mechanisms of olfactory recognition memory. Rev Neurosci 6:125–141PubMedGoogle Scholar
  33. Laberge FL, Hara TJ (2001) Neurobiology of fish olfaction: a review. Brain Res Rev 36:46–59PubMedCrossRefGoogle Scholar
  34. Linden DJ, Connor JA (1995) Long-term synaptic depression. Annu Rev Neurosci 18:319–357PubMedCrossRefGoogle Scholar
  35. Lonart G, Schoch S, Kaeser PS, Larkin CJ, Südhof TC, Linden DJ (2003) Phosphorylation of RIM1α by PKA triggers presynaptic long-term potentiation at cerebellar parallel fiber synapses. Cell 115:49–60PubMedCrossRefGoogle Scholar
  36. Lovinger DM (1991) Trans-1-aminocyclopentane-1,3-dicarboxylic acid (t-ACPD) decreases synaptic excitation in rat striatal slices through a presynaptic action. Neurosci Lett 129:17–21PubMedCrossRefGoogle Scholar
  37. Lowe G (2003) Electrical signaling in the olfactory bulb. Curr Opin Neurobiol 13:476–481PubMedCrossRefGoogle Scholar
  38. Luscher C, Nicoll RA, Malenka RC, Muller D (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 3:545–550PubMedCrossRefGoogle Scholar
  39. Ma PM (1994) Catecholaminergic systems in the zebrafish II Projection pathways and pattern of termination of the locus coeruleus. J Comp Neurol 344:256–269PubMedCrossRefGoogle Scholar
  40. Malenka RC, Nicoll RA (1999) Long-term potentiation―a decade of progress? Science 285:1870–1874PubMedCrossRefGoogle Scholar
  41. Maler L, Monaghan D (1991) The distribution of excitatory amino acid binding sites in the brain of an electric fish, Apteronotus leptorhynchus. J Chem Neuroanat 4:39–61PubMedCrossRefGoogle Scholar
  42. Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–125PubMedCrossRefGoogle Scholar
  43. Malinow R, Mainen ZF, Hayashi Y (2000) LTP mechanisms: from silence to four-lane traffic. Curr Opin Neurobiol 10:352–357PubMedCrossRefGoogle Scholar
  44. Manabe T, Wyllie DJ, Perkel DJ, Nicoll RA (1993) Modulation of synaptic transmission and long-term potentiation: effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J Neurophysiol 70:1451–1459PubMedGoogle Scholar
  45. Martin SJ, Grimwood PD, Morris RGM (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711PubMedCrossRefGoogle Scholar
  46. Martinoli M-G, Dubourg P, Geffard M, Calas A, Kah O (1990) Distribution of GABA-immunoreactive neurons in the forebrain of the goldfish, Carassius auratus. Cell Tissue Res 260:77–84CrossRefGoogle Scholar
  47. McNaughton BL (1982) Long-term synaptic enhancement and short-term potentiation in rat fascia dentata act through different mechanisms. J Physiol 324:249–262PubMedGoogle Scholar
  48. Médina M, Repérant J, Dufour S, Ward R, Le Belle N, Miceli D (1994) The distribution of GABA-immunoreactive neurons in the brain of the silver eel (Anguilla anguilla L.). Anat Embryol 189:25–39PubMedCrossRefGoogle Scholar
  49. Meléndez-Ferro M, Pérez-Costas E, Rodríguez-Muñoz R, Gómez-López MP, Anadón R, Rodicio MC (2001) GABA immunoreactivity in the olfactory bulbs of the adult sea lamprey Petromyzon marinus L. Brain Res 893:253–260PubMedCrossRefGoogle Scholar
  50. Mori K, Nagao H, Yoshihara Y (1999) The olfactory bulb: coding and processing of odor molecule information. Science 286:711–715PubMedCrossRefGoogle Scholar
  51. Nicoll RA, Malenka RC (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377:115–118PubMedCrossRefGoogle Scholar
  52. O’Connor JJ, Rowan MJ, Anwyl R (1994) Long-lasting enhancement of NMDA receptor-mediated synaptic transmission by metabotropic glutamate receptor activation. Nature 367:557–559PubMedCrossRefGoogle Scholar
  53. Pinato G, Midtgaad J (2003) Regulation of granule cell excitability by a low-threshold calcium spike in turtle olfactory bulb. J Neurophysiol 90:3341–3351PubMedCrossRefGoogle Scholar
  54. Salin PA, Malenka RC, Nicoll RA (1996) Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16:797–803PubMedCrossRefGoogle Scholar
  55. Sato Y, Hoshikawa R, Okawa K, Satou M (2000) Long-term potentiation in the carp olfactory bulb: an in vitro study. Neurosci Res 24(Suppl):S99CrossRefGoogle Scholar
  56. Satou M (1990) Synaptic organization, local neuronal circuitry, and functional segregation of the teleost olfactory bulb. Progr Neurobiol 34:115–142CrossRefGoogle Scholar
  57. Satou M (1992) Synaptic organization of the olfactory bulb and its central projection. In: Hara TJ (ed) Fish chemoreception. Chapman and Hall, London, pp 40–59Google Scholar
  58. Satou M, Fujita I, Ichikawa M, Yamaguchi K, Ueda K (1983) Field potential and intracellular potential studies of the olfactory bulb in the carp: evidence for a functional separation of the olfactory bulb into lateral and medial subdivisions. J Comp Physiol 152A:319–333CrossRefGoogle Scholar
  59. Satou M, Anzai S, Huruno M (2005) Long-term potentiation and olfactory memory formation in the carp (Cyprinus carpio L.) olfactory bulb. J Comp Physiol 191A:421–434CrossRefGoogle Scholar
  60. Schoppa NE, Kinzie JM, Sahara Y, Segerson TP, Westbrook GL (1998) Dendrodendritic inhibition in the olfactory bulb is driven by NMDA receptors. J Neurosci 18:6790–6802PubMedGoogle Scholar
  61. Schoppa NE, Urban NN (2003) Dendritic processing within olfactory bulb circuits. Trends Neurosci 26:501–506PubMedCrossRefGoogle Scholar
  62. Sheng M, Kim MJ (2002) Postsynaptic signaling and plastic mechanisms. Science 298:776–780PubMedCrossRefGoogle Scholar
  63. Weisskopf MG, Castillo PE, Zalutsky RA, Nicoll RA (1994) Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265:1878–1882PubMedCrossRefGoogle Scholar
  64. Wellis DP, Kauer JS (1993) GABAA and glutamate receptor involvement in dendrodendritic synaptic interactions from salamander olfactory bulb. J Physiol 469:315–339PubMedGoogle Scholar
  65. White WF, Nadler JV, Cotman CW (1978) A perfusion chamber for the study of CNS physiology and pharmacology in vitro. Brain Res 152:591–596PubMedCrossRefGoogle Scholar
  66. Yokoi M, Mori K, Nakanishi S (1995) Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. Proc Natl Acad Sci USA 92:3371–3375PubMedCrossRefGoogle Scholar
  67. Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 24:1071–1089PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Division of Information Science, Graduate School of Integrated ScienceYokohama City UniversityYokohamaJapan

Personalised recommendations