Advertisement

Visual accommodation in vertebrates: mechanisms, physiological response and stimuli

  • Matthias Ott
Review

Abstract

The mechanism and stimulation of the accommodative reflex in vertebrate eyes are reviewed. Except for lampreys, accommodation is brought about by intraocular muscles that mediate either a displacement or deformation of the lens, a change of the corneal radius of curvature or a combination of these mechanisms. Elasmobranchs have little accommodation and are emmetropic in water rather than hyperopic as commonly stated. Accommodation in teleosts and amphibians is well understood and achieved by lens displacement. The accommodative mechanism of amniotes is of considerable diversity and reflects different lifestyles rather than phylogenetical relationships. In all amniotes, the ciliary muscle never has a direct impact on the lens. It relaxes the tension applied to the lens by zonular fibers and/or ligaments. In birds and reptiles the ciliary muscle is usually split into two parts, of which the anterior portion changes the corneal radius of curvature. The deformation of the lens is generally achieved either by its own elasticity (humans, probably other mammals and sauropsids) or by the force of circular muscle fibers in the iris (reptiles, birds, aquatic mammals). In the second part of the paper, some of the current hypotheses about the accommodative stimulus are reviewed together with physiological response characteristics.

Keywords

Eye Focus Lens Ciliary body Presbyopia 

Abbreviations

D

Diopter

F

Focal length

IR

Infrared

LCA

Longitudinal chromatic aberration

LED

Light emitting diode

Notes

Acknowledgements

The author thanks the editor of this journal for his support and the invitation to write this review. Shaun Collin kindly supported me with literature and helpful comments on accommodation in lampreys and sharks. I gratefully acknowledge the detailed and helpful comments of Mike Land and a second anonymous reviewer on the manuscript.

References

  1. Andison ME, Sivak JG (1996) The naturally-occuring accommodative response of the oscar, Astronotus ocellatus, to visual stimuli. Vis Res 36:3021–3027PubMedGoogle Scholar
  2. Artal P, Hereros de Tejada P, Munoz Tedo C, Green DG (1998) Retinal image quality in the rodent eye. Vis Neurosci 15:597–605PubMedGoogle Scholar
  3. Ballard KA, Sivak JG (1989) Intraocular muscles of the Canadian river otter and Canadian beaver and their optical function. Can J Zool 67:469–474Google Scholar
  4. Beer T (1893) Studien über die Akkommodation des Vogelauges. Arch Ges Physiol 53:175–237Google Scholar
  5. Beer T (1894) Die Akkommodation des Fischauges. Pflügers Arch Ges Physiol 58:523–650Google Scholar
  6. Beer T (1898a) Die Akkommodation des Auges bei den Reptilien. Pflügers Arch Ges Physiol 69:507–568Google Scholar
  7. Beer T (1898b) Die Akkommodation des Auges bei den Amphibien. Pflügers Arch Ges Physiol 73:501–534Google Scholar
  8. Bellairs AD, Underwood G (1951) The origin of snakes. Biol Rev Cambridge Phil Soc 26:193–237Google Scholar
  9. Caldwell MW, Lee MSY (1997) A snake with legs from the marine Cretaceous of the Middle East. Nat (Lond) 386:705–709Google Scholar
  10. Caprette CL, Lee MSY, Shine R, Mokany A, Downhower JF (2004) The origin of snakes (serpentes) as seen through eye anatomy. Biol J Linnean Soc 81:469–482Google Scholar
  11. Choh V, Meriney SD, Sivak JG (2002) A physiological model to measure effects of age on lenticular accommodation and the spherical aberration in chickens. Invest Ophthalmol Vis Sci 43:92–98PubMedGoogle Scholar
  12. Collin SP, Fritsch B (1993) Observations on the shape of the lens in the eye of the silver lamprey, Ichthyomyzon unicuspis. Can J Zool 71:34–41Google Scholar
  13. Collin SP, Potter IC, Braekevelt CR (1999) The ocular morphology of the southern hemisphere lamprey Geotria australis Gray, with special reference to optical specialisations and the characterisation and phylogeny of photoreceptor types. Brain Behav Evol 54:96–118PubMedGoogle Scholar
  14. Crawford KS, Kaufman PL, Bito LZ (1990) The role of the iris in accommodation of rhesus monkeys. IOVS 31:2185–2190Google Scholar
  15. Croft MA, Glasser A, Kaufman PL (2003) Accommodation and presbyopia. Int Ophthalmol Clin Spring 41:33–46Google Scholar
  16. Douglas RH, Collett TS, Wagner H-J (1986) Accommodation in anuran amphibia and its role in depth vision. J Comp Physiol A 158:133–143Google Scholar
  17. Drexler W, Baumgartner A, Findl O, Hitzenberger CK Fercher AF (1997) Biometric investigation of changes in the anterior eye segment during accommodation. Vis Res 37:2789–2800PubMedGoogle Scholar
  18. Duke-Elder S (1958) System of ophthalmology I: the eye in evolution. Henry Kimpton, LondonGoogle Scholar
  19. Ehrenfeld DW, Koch AL (1967) Visual accommodation in the Green Turtle. Science 155:827–828PubMedGoogle Scholar
  20. Fincham EF (1937) The mechanism of accommodation. British J Ophthalmol, Monograph VIIIGoogle Scholar
  21. Fincham EF (1951) The accommodation reflex and its stimulus. British J Ophthalmol 35:381–393Google Scholar
  22. Fitzke FW, Hayes BP, Hodos W, Holden AL, Low JC (1985) Refractive sectors in the visual field of the pigeon eye. J Physiol (Lond) 369:33–44Google Scholar
  23. Fleishman LJ, Howland HC, Howland MJ, Rand AS, Davenport ML (1988) Crocodiles don’t focus underwater. J Comp Physiol (A) 4:441–443Google Scholar
  24. Flitcroft DI, Morley JW (1997) Accommodation in binocular contour rivalry. Vision Res 37:121–125PubMedGoogle Scholar
  25. Franz V (1913) Sehorgan. In: Oppel A (ed) Lehrbuch der vergleichenden mikroskopischen Anatomie der Wirbeltiere, vol 7. Gustav Fischer Verlag JenaGoogle Scholar
  26. Franz V (1931) Die Akkommodation des Selachierauges und seine Abblendungsapparate, nebst Befunden an der Retina. Zool Jb Allg Zool Physiol 49:323–462Google Scholar
  27. Franz V (1932) Auge und Akkommodation von Petromyzon (Lampetra) fluviatilis. Zool Jb Allg Zool und Physiol Tiere 52: 118–178Google Scholar
  28. Franz V (1934) Vergleichende Anatomie des Wirbeltierauges. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere, vol 2. Urban und Schwarzenberg BerlinGoogle Scholar
  29. Fritzberg W (1913) Beiträge zur Kenntnis des Akkommodationsapparates bei Reptilien. Inaugural-Dissertation GöttingenGoogle Scholar
  30. Gamlin PD, Reiner A (1991) The Edinger-Westphal nucleus: sources of input influencing accommodation, pupilloconstriction, and choroidal blood flow. J Comp Neurol 305:425–438Google Scholar
  31. Gillum W (1976) Mechanisms of accommodation in vertebrates. Ophthalmic Semin 1:253–286PubMedGoogle Scholar
  32. Glasser A (2003) How other species accommodate. In: Guthoff R and Ludwig K (eds) Current aspects of human accommodation II. Kaden Verlag, Heidelberg, pp 13–38Google Scholar
  33. Glasser A, Troilo D, Howland HC (1994) The mechanism of corneal accommodation in chicks. Vision Res 34:1549–1566PubMedGoogle Scholar
  34. Glasser A, Murphy CJ, Troilo D, Howland HC (1995) The mechanism of lenticular accommodation in the chick eye. Vision Res 35:1525–1540PubMedGoogle Scholar
  35. Glasser A, Howland HC (1996) A history of studies of visual accommodation in birds. Q Rev Biol 71:475–509PubMedGoogle Scholar
  36. Glasser A, Pardue MT, Andison ME, Sivak JG (1997) A behavioral study of refraction, corneal curvature, and accommodation in raptor eyes. Can J Zool 75:2010–2020Google Scholar
  37. Glasser A, Kaufman PL (1999) The mechanism of accommodation in primates. Ophthalmology 106:863–872PubMedGoogle Scholar
  38. Glickstein M, Millodot M (1970) Retinoscopy and eye size. Science 168:605–606PubMedGoogle Scholar
  39. Green DG, Powers MK, Banks MS (1980) Depth of focus, eye size and visual acuity. Vision Res 20:827–835PubMedGoogle Scholar
  40. Grynfeltt E (1910) Sur le muscle tenseur de la choriode des Téléostécus. Compt rend de l’Acad des siences Paris 14. FévrGoogle Scholar
  41. Gwiazda J, Thorn F, Bauer J, Held R (1993) Myopic children show insufficient accommodative response to blur. Invest Ophthalmol Vis Sci 34:690–694PubMedGoogle Scholar
  42. Harkness L, Bennett-Clark HC (1978) The deep fovea as a focus indicator. Nature (Lond) 272:814–816Google Scholar
  43. He CJ, Gwiazda J, Thorn F, Held R, Huang W (2003) Change in corneal shape and corneal wave-front aberrations with accommodation. J Vis 3:456–463PubMedGoogle Scholar
  44. Heine L (1907) Über die Verhältnisse der Refraktion, Akkommodation und des Augenbinnendruckes in der Tierreihe. Med.-naturwiss Archiv Vol 1Google Scholar
  45. Helmholtz H (1855) Ueber die Accommodation des Auges. Graefe’s Arch Ophthalm 1(II):1–74Google Scholar
  46. Helmholtz H (1896) Handbuch der Physiologischen Optik, zweite Auflage. Verlag von Leopold Voss, Hamburg und LeipzigGoogle Scholar
  47. Henze MJ, Schaeffel F, Wagner H-J, Ott M (2004a) Accommodation behaviour during prey capture in the vietnamese leaf turtle (Geoemyda spengleri). J Comp Physiol A 190:139–146Google Scholar
  48. Henze MJ, Schaeffel F, Ott M (2004b) Variations in the off-axis refractive state in the eye of the vietnamese leaf turtle (Geoemyda spengleri). J Comp Physiol A 190:131–137Google Scholar
  49. Hess C (1909) Untersuchungen zur vergleichenden Physiologie und Morphologie des Akkommodationsvorganges. Nach gemeinsamen, mit Dr. Fischer angestellten Beobachtungen. Archiv für Augenheilkunde 62:345–392Google Scholar
  50. Hess C (1912) Untersuchungen zur vergleichenden Physiologie und Morphologie des Ciliarringes. Festschrift für H Spengel Zool Jb Suppl 15(3):155–176Google Scholar
  51. Hess C, Heine L (1898) Arbeiten aus dem Gebiet der Akkommodationslehre. Arch Ophthal 46:243–276CrossRefGoogle Scholar
  52. Howland HC (1991) Determination of ocular refraction. In: Charman N (ed) Vision and visual dysfunction, Vol 1 of visual optics and instrumentation. CRC Press, Boca Raton, pp 399–414Google Scholar
  53. Howland HC, Howland M, Murphy CJ (1993) Refractive state of the rhinoceros. Vision Res 33:2649–2651PubMedGoogle Scholar
  54. Hirschberg I (1882) Zur Dioptrik und Ophthalmoskopie der Fisch- und Amphibienaugen. Arch Anat Physiol Abt Physiol 1882:493–526Google Scholar
  55. Hueter RE, Murphy CJ, Howland M, Sivak JG, Paul-Murphy JR, Howland HC (2001) Refractive state and accommodation in the eyes of free-swimming versus restrained juvenile lemon sharks (Negaprion brevirostris). Vision Res 41:1885–1889PubMedGoogle Scholar
  56. Hughes A (1977) The topography of vision in mammals of contrasting life style: comparative optics and retinal organisation. In: Crescitelli F (ed) Handbook of Sensory Physiology VII (5). Springer, Berlin Heidelberg New York, pp 613–756Google Scholar
  57. Kahmann H (1932) Sinnesphysiologische Studien an Reptilien II: Über die Akkommodation im Schlangenauge mit Bemerkungen über die Akkommodation der Echsen und über den Akkommodationsapparat. Zool Jb Allg Zool und Physiol Tiere 52:295–337Google Scholar
  58. Kasthurirangan S, Vilupuru AS, Glasser A (2003) Amplitude dependent accommodation dynamics in humans. Vis Res 43:2945–2956PubMedGoogle Scholar
  59. Katzir G, Howland HC (2003) Corneal power and underwater accommodation in great cormorants (Phalacocorax carbo sinensis). J Exp Biol 206:833–841PubMedGoogle Scholar
  60. Kimura S, Niida T, Mukuno F, Ishikawa S (1997) Direct parasympathetic pathway from midbrain to ciliary muscles in cats and monkeys. Jpn J Ophthalmol 41:203–208PubMedGoogle Scholar
  61. Kopsch F (1892) Iris und Corpus ciliare des Reptilienauges nebst Bemerkungen über einige Augenteile. Inaugural-Dissertation BerlinGoogle Scholar
  62. Kröger RHH, Binder S (2000) Use of paper selectively absorbing long wavelengths to reduce the impact of educational near work on human refractive development. Br J Ophthalmol 84:890–893PubMedGoogle Scholar
  63. Kruger PB, Mathews S, Aggarwala KR, Yager D, Kruger ES (1995) Accommodation repsonds to changing contrast of long, middle and short spectral-waveband components of the retinal image. Vision Res 35:2415–2429PubMedGoogle Scholar
  64. Kruger PB, Mathews S, Katz M, Aggarwala KR, Nowbotsing S (1997) Accommodation without feedback suggests directional signals specify ocular focus. Vision Res 37:2511–2526PubMedGoogle Scholar
  65. Lauber H (1901) Beiträge zur Anatomie des vorderen Augenabschnittes der Wirbeltiere. Anatomische Hefte 69:369–454Google Scholar
  66. Lesser A (1914) Die Akkommodation der Ringelnatter. Inaugural-Dissertation Gotha 1914Google Scholar
  67. Manteuffel G, Wess O, Himstedt W (1977) Measurements of the dioptric apparatus in amphibian eyes and calculations of the visual acuity in water and air. Zool Jb Physiol 81:395–406Google Scholar
  68. Mathis U, Schaeffel F, Howland HC (1988) Visual optics in toads (Bufo americanus). J Comp Physiol A 163:201–213PubMedGoogle Scholar
  69. McCourt ME, Jacobs GH (1984) Refractive state, depth of focus and accommodation of the California ground squirrel (Spermophilus beecheyi). Vision Res 24:1261–1266PubMedGoogle Scholar
  70. Millodot M, Blough P (1971) The refractive state of the pigeon. Vision Res 11:1019–1022PubMedGoogle Scholar
  71. Murphy CJ, Howland HC (1986) On the gecko pupil and Schreiner’s disc. Vision Res 26:815–817PubMedGoogle Scholar
  72. Murphy CJ, Bellhorn RW, Williams T, Burns MS, Schaeffel F, Howland HC (1990) Refractive state, ocular anatomy, and accommodative range of the sea otter (Enhydra lutris). Vision Res 30:23–32PubMedGoogle Scholar
  73. Murphy CJ, Howland HC (1991) The functional significance of crescent-shaped pupils and multiple pupillary apertures. J Exp Zool Suppl 5:22–28Google Scholar
  74. Murphy CJ, Kern TJ, Howland HC (1992) Refractive state, corneal curvature, accommodative range and ocular anatomy of the Asian elephant (Elephas maximus). Vision Res 32:2013–2021PubMedGoogle Scholar
  75. Nellis DW, Sivak JG, McFarland WN, Howland HC (1989) Characteristics of the eye of the Indian mongoose (Herpestes auropunctatus). Can J Zool 67:2814–2820Google Scholar
  76. Northmore DPM, Granda AM (1991) Refractive state, contrast sensitivity, and resolution in the freshwater turtle Pseudemys scripta elegance, determined by visual evoked potentials. Vis Neurosci 7:675–678Google Scholar
  77. Ott M, Schaeffel F (1995) A negatively powered lens in the chameleon. Nature (Lond) 373:692–694Google Scholar
  78. Ott M, Schaeffel F, Kirmse W (1998) Binocular vision and accommodation in prey-catching chameleons. J Comp Physiol A 182:319–330Google Scholar
  79. Pettigrew JD, Collin SP (1995) Terrestrial optics in an aquatic eye: the sandlance Limnichthyes fasciatus (Creediidae, Teleostei). J Comp Physiol A 177:397–408Google Scholar
  80. Pettigrew JD, Collin SP, Ott M (1999) Convergence of specialized behaviour, eye movements and visual optics in the sandlance (Teleostei) and the chameleon (Reptilia). Curr Biol 9:421–424PubMedGoogle Scholar
  81. Roth G (1987) Visual behaviour in salamanders. Springer, Berlin Heidelberg New YorkGoogle Scholar
  82. Rucker FJ, Kruger PB (2001) Isolated short-wavelength sensitive cones can mediate a reflex accommodation response. Vision Res 41:911–922PubMedGoogle Scholar
  83. Scanlon JD, Lee MSY (2000) The pleistocene serpent Wonambi and the early evolution of snakes. Nature (Lond) 403:416–420Google Scholar
  84. Schachar RA, Tello C, Cudmore DP, Liebmann JM, Black TD, Ritch TD (1996) In vivo increase of the human lens equatorial diameter during accommodation. Am J Physiol 271:R670–R676PubMedGoogle Scholar
  85. Schaeffel F (1991) Underwater vision in semi-aquatic european snakes. Naturwissenschaften 78:373–375Google Scholar
  86. Schaeffel F (1994) Functional accommodation in birds. In: Davies MNO, Green PR (eds) Perception and motor control in birds. Springer, Berlin Heidelberg NewyorkGoogle Scholar
  87. Schaeffel F, Farkas L, Howland HC (1987) Infrared photoretinoscope. Appl Opt 26:1505–1509Google Scholar
  88. Schaeffel F, Howland HC (1987) Corneal accommodation in chick and pigeon. J Comp Physiol A 160:375–384PubMedGoogle Scholar
  89. Schaeffel F, Mathis U (1991) Underwater vision in semi-aquatic european snakes. Naturwissenschaften 78:373–375Google Scholar
  90. Schaeffel F, Wagner H (1992) Barn owls have symmetrical accommodation in both eyes, but independent pupillary responses to light. Vision Res 32:1149–1155PubMedGoogle Scholar
  91. Schaeffel F, Wilhelm H, Zrenner E (1993) Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors. J Physiol (Lond) 461:301–320Google Scholar
  92. Schaeffel F, Hagel G, Eikermann J, Collett T (1994) Lower-field myopia and astigmatism in amphibians and chickens. J Opt Soc Am A 11:487–497Google Scholar
  93. Seideman A, Schaeffel F (2002) Effects of longitudinal chromatic aberration on accommodation and emmetropization. Vision Res 42:2409–2417Google Scholar
  94. Seideman A, Schaeffel F (2003) An evaluation of the lag of accommodation using photorefraction. Vis Res 43:419–430Google Scholar
  95. Schmucker C, Schaeffel F (2004) A paraxial schematic eye model for the growing C57BL/6 mouse. Vision Res 44:1857–1867PubMedGoogle Scholar
  96. Schustermann RJ, Barrett B (1973) Amphibious nature of visual acuity in the Asian “clawless” otter. Nature (Lond) 244:518–519Google Scholar
  97. Schwenk K (2000) Feeding in lepidosaurs. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic, San Diego, pp 175–291Google Scholar
  98. Sivak JG (1975) Accommodative lens movements in fishes: movement along the pupil axis vs movement along the pupil plane. Vision Res 15:825–828PubMedGoogle Scholar
  99. Sivak JG (1976a) Optics of the eye of the “four-eyed fish” (Anableps anableps). Vision Res 16:531–534PubMedGoogle Scholar
  100. Sivak JG (1976b) The accommodative significance of the “ramp" retina of the eye of the stingray.Vision Res 16:945–950PubMedGoogle Scholar
  101. Sivak JG (1977) The role of the spectacle in the visual optics of the snake eye. Vision Res 17:293–298PubMedGoogle Scholar
  102. Sivak JG (1980) Accommodation in vertebrates. In: Zadunaisky JA, Dacson H (eds) Current topics in in eye research. Academic, New YorkGoogle Scholar
  103. Sivak JG (2004) Through the lens clearly: phylogeny and development. IOVS 45:740–747Google Scholar
  104. Sivak JG and Woo GCS (1975) Accommodative lens movements in holosteans (Amia calva and Lepisosteus osseus oxyurus) and in the sea lamprey (Petromyzon marinus). Can J Zool 53:516–520CrossRefGoogle Scholar
  105. Stiles WS, Crawford BH (1933) The luminous effeciency of rays entering the eye pupil at different points. Proc R Soc Lond B 112:428–450Google Scholar
  106. Strenk SA, Semmlow JL (1995) Magnetic resonance images of the ciliary muscle and lens in presbyopes and non-presbyopes. Vision science and its applications. Optical Society of America, Washington DC pp 88–91Google Scholar
  107. Toates FM (1972) Accommodation function of the human eye. Physiol Rev 52:828–863PubMedGoogle Scholar
  108. Tretjakoff D (1906a) Der Musculus protractor lentis im Urodelenauge. Anat Anz 28:25–32Google Scholar
  109. Tretjakoff D (1906b) Die vordere Augenhälfte des Frosches. Z Wiss Zool 80:327–410Google Scholar
  110. Tscherning M (1920) Accommodation physiologic optics. The Keystone, Philadelphia, pp 192–228Google Scholar
  111. Underwood G (1970) The eye. In: Gans C, Parsons TS (eds) Biology of the Reptilia. Academic, LondonGoogle Scholar
  112. Verrier ML (1930) Contribution a l’étude de la vision chez les selaciens. Annales des Siences Naturales Zoologie 13: 5–54Google Scholar
  113. Wallace WC (1834) Discovery of a muscle in the eye of fishes. Am J Sci Arts 26:394Google Scholar
  114. Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Bloomfield Hills, pp 281–650Google Scholar
  115. Welsch U, Ramdohr S, Riedelsheimer B, Hebel R, Eisert R, Plotz J (2001) Microscopic anatomy of the eye of the deep-diving Antarctic Weddell seal (Leptonychotes weddellii). J Morphol 248:165–174PubMedGoogle Scholar
  116. Werner C (1983) Zielorientierung im Beutefangverhalten des Feuersalamanders Salamandra salamandra. Inaugural Dissertation, Technische Hochschule DarmstadtGoogle Scholar
  117. Werner C, Himstedt W (1984) Eye accommodation during prey capture behavior in salamanders (Salamandra salamandra L). Behav Brain Res 12:69–73PubMedGoogle Scholar
  118. van der Willigen RF, Frost BJ, Wagner H. (1998) Stereoscopic depth perception in the owl. Neuroreport 9:1233–1237PubMedGoogle Scholar
  119. Wilson BJ, Decker KE, Roorda A (2002) Monochromatic aberrations provide an odd error cue to focus direction. J Opt Soc Am A Opt Image Sci Vis 19:833–839PubMedGoogle Scholar
  120. Wilson RS (1997) Does the lens diameter increase or decrease during accommodation? Human accommodation studies: a new technique using infrared retro-illumination video photography and pixel unit measurements. Trans Am Ophthalmol Soc 95:261–270PubMedGoogle Scholar
  121. Woolf D (1956) A comparative cytological study of the ciliary muscle. Anat Rec 124:145–163PubMedGoogle Scholar
  122. Wychgram E (1912) Über das Ligamentum pectinatum im Vogelauge. Arch Vergl Ophthalmol 3:22–29Google Scholar
  123. Zardoya R, Meyer A (2001) The evolutionary position of turtles revised. Naturwissenschaften 88:193–200PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute for AnatomyUniversity of TuebingenTuebingenGermany

Personalised recommendations