Visual accommodation in vertebrates: mechanisms, physiological response and stimuli
- 727 Downloads
- 32 Citations
Abstract
The mechanism and stimulation of the accommodative reflex in vertebrate eyes are reviewed. Except for lampreys, accommodation is brought about by intraocular muscles that mediate either a displacement or deformation of the lens, a change of the corneal radius of curvature or a combination of these mechanisms. Elasmobranchs have little accommodation and are emmetropic in water rather than hyperopic as commonly stated. Accommodation in teleosts and amphibians is well understood and achieved by lens displacement. The accommodative mechanism of amniotes is of considerable diversity and reflects different lifestyles rather than phylogenetical relationships. In all amniotes, the ciliary muscle never has a direct impact on the lens. It relaxes the tension applied to the lens by zonular fibers and/or ligaments. In birds and reptiles the ciliary muscle is usually split into two parts, of which the anterior portion changes the corneal radius of curvature. The deformation of the lens is generally achieved either by its own elasticity (humans, probably other mammals and sauropsids) or by the force of circular muscle fibers in the iris (reptiles, birds, aquatic mammals). In the second part of the paper, some of the current hypotheses about the accommodative stimulus are reviewed together with physiological response characteristics.
Keywords
Eye Focus Lens Ciliary body PresbyopiaAbbreviations
- D
Diopter
- F
Focal length
- IR
Infrared
- LCA
Longitudinal chromatic aberration
- LED
Light emitting diode
Notes
Acknowledgements
The author thanks the editor of this journal for his support and the invitation to write this review. Shaun Collin kindly supported me with literature and helpful comments on accommodation in lampreys and sharks. I gratefully acknowledge the detailed and helpful comments of Mike Land and a second anonymous reviewer on the manuscript.
References
- Andison ME, Sivak JG (1996) The naturally-occuring accommodative response of the oscar, Astronotus ocellatus, to visual stimuli. Vis Res 36:3021–3027PubMedGoogle Scholar
- Artal P, Hereros de Tejada P, Munoz Tedo C, Green DG (1998) Retinal image quality in the rodent eye. Vis Neurosci 15:597–605PubMedGoogle Scholar
- Ballard KA, Sivak JG (1989) Intraocular muscles of the Canadian river otter and Canadian beaver and their optical function. Can J Zool 67:469–474Google Scholar
- Beer T (1893) Studien über die Akkommodation des Vogelauges. Arch Ges Physiol 53:175–237Google Scholar
- Beer T (1894) Die Akkommodation des Fischauges. Pflügers Arch Ges Physiol 58:523–650Google Scholar
- Beer T (1898a) Die Akkommodation des Auges bei den Reptilien. Pflügers Arch Ges Physiol 69:507–568Google Scholar
- Beer T (1898b) Die Akkommodation des Auges bei den Amphibien. Pflügers Arch Ges Physiol 73:501–534Google Scholar
- Bellairs AD, Underwood G (1951) The origin of snakes. Biol Rev Cambridge Phil Soc 26:193–237Google Scholar
- Caldwell MW, Lee MSY (1997) A snake with legs from the marine Cretaceous of the Middle East. Nat (Lond) 386:705–709Google Scholar
- Caprette CL, Lee MSY, Shine R, Mokany A, Downhower JF (2004) The origin of snakes (serpentes) as seen through eye anatomy. Biol J Linnean Soc 81:469–482Google Scholar
- Choh V, Meriney SD, Sivak JG (2002) A physiological model to measure effects of age on lenticular accommodation and the spherical aberration in chickens. Invest Ophthalmol Vis Sci 43:92–98PubMedGoogle Scholar
- Collin SP, Fritsch B (1993) Observations on the shape of the lens in the eye of the silver lamprey, Ichthyomyzon unicuspis. Can J Zool 71:34–41Google Scholar
- Collin SP, Potter IC, Braekevelt CR (1999) The ocular morphology of the southern hemisphere lamprey Geotria australis Gray, with special reference to optical specialisations and the characterisation and phylogeny of photoreceptor types. Brain Behav Evol 54:96–118PubMedGoogle Scholar
- Crawford KS, Kaufman PL, Bito LZ (1990) The role of the iris in accommodation of rhesus monkeys. IOVS 31:2185–2190Google Scholar
- Croft MA, Glasser A, Kaufman PL (2003) Accommodation and presbyopia. Int Ophthalmol Clin Spring 41:33–46Google Scholar
- Douglas RH, Collett TS, Wagner H-J (1986) Accommodation in anuran amphibia and its role in depth vision. J Comp Physiol A 158:133–143Google Scholar
- Drexler W, Baumgartner A, Findl O, Hitzenberger CK Fercher AF (1997) Biometric investigation of changes in the anterior eye segment during accommodation. Vis Res 37:2789–2800PubMedGoogle Scholar
- Duke-Elder S (1958) System of ophthalmology I: the eye in evolution. Henry Kimpton, LondonGoogle Scholar
- Ehrenfeld DW, Koch AL (1967) Visual accommodation in the Green Turtle. Science 155:827–828PubMedGoogle Scholar
- Fincham EF (1937) The mechanism of accommodation. British J Ophthalmol, Monograph VIIIGoogle Scholar
- Fincham EF (1951) The accommodation reflex and its stimulus. British J Ophthalmol 35:381–393Google Scholar
- Fitzke FW, Hayes BP, Hodos W, Holden AL, Low JC (1985) Refractive sectors in the visual field of the pigeon eye. J Physiol (Lond) 369:33–44Google Scholar
- Fleishman LJ, Howland HC, Howland MJ, Rand AS, Davenport ML (1988) Crocodiles don’t focus underwater. J Comp Physiol (A) 4:441–443Google Scholar
- Flitcroft DI, Morley JW (1997) Accommodation in binocular contour rivalry. Vision Res 37:121–125PubMedGoogle Scholar
- Franz V (1913) Sehorgan. In: Oppel A (ed) Lehrbuch der vergleichenden mikroskopischen Anatomie der Wirbeltiere, vol 7. Gustav Fischer Verlag JenaGoogle Scholar
- Franz V (1931) Die Akkommodation des Selachierauges und seine Abblendungsapparate, nebst Befunden an der Retina. Zool Jb Allg Zool Physiol 49:323–462Google Scholar
- Franz V (1932) Auge und Akkommodation von Petromyzon (Lampetra) fluviatilis. Zool Jb Allg Zool und Physiol Tiere 52: 118–178Google Scholar
- Franz V (1934) Vergleichende Anatomie des Wirbeltierauges. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere, vol 2. Urban und Schwarzenberg BerlinGoogle Scholar
- Fritzberg W (1913) Beiträge zur Kenntnis des Akkommodationsapparates bei Reptilien. Inaugural-Dissertation GöttingenGoogle Scholar
- Gamlin PD, Reiner A (1991) The Edinger-Westphal nucleus: sources of input influencing accommodation, pupilloconstriction, and choroidal blood flow. J Comp Neurol 305:425–438Google Scholar
- Gillum W (1976) Mechanisms of accommodation in vertebrates. Ophthalmic Semin 1:253–286PubMedGoogle Scholar
- Glasser A (2003) How other species accommodate. In: Guthoff R and Ludwig K (eds) Current aspects of human accommodation II. Kaden Verlag, Heidelberg, pp 13–38Google Scholar
- Glasser A, Troilo D, Howland HC (1994) The mechanism of corneal accommodation in chicks. Vision Res 34:1549–1566PubMedGoogle Scholar
- Glasser A, Murphy CJ, Troilo D, Howland HC (1995) The mechanism of lenticular accommodation in the chick eye. Vision Res 35:1525–1540PubMedGoogle Scholar
- Glasser A, Howland HC (1996) A history of studies of visual accommodation in birds. Q Rev Biol 71:475–509PubMedGoogle Scholar
- Glasser A, Pardue MT, Andison ME, Sivak JG (1997) A behavioral study of refraction, corneal curvature, and accommodation in raptor eyes. Can J Zool 75:2010–2020Google Scholar
- Glasser A, Kaufman PL (1999) The mechanism of accommodation in primates. Ophthalmology 106:863–872PubMedGoogle Scholar
- Glickstein M, Millodot M (1970) Retinoscopy and eye size. Science 168:605–606PubMedGoogle Scholar
- Green DG, Powers MK, Banks MS (1980) Depth of focus, eye size and visual acuity. Vision Res 20:827–835PubMedGoogle Scholar
- Grynfeltt E (1910) Sur le muscle tenseur de la choriode des Téléostécus. Compt rend de l’Acad des siences Paris 14. FévrGoogle Scholar
- Gwiazda J, Thorn F, Bauer J, Held R (1993) Myopic children show insufficient accommodative response to blur. Invest Ophthalmol Vis Sci 34:690–694PubMedGoogle Scholar
- Harkness L, Bennett-Clark HC (1978) The deep fovea as a focus indicator. Nature (Lond) 272:814–816Google Scholar
- He CJ, Gwiazda J, Thorn F, Held R, Huang W (2003) Change in corneal shape and corneal wave-front aberrations with accommodation. J Vis 3:456–463PubMedGoogle Scholar
- Heine L (1907) Über die Verhältnisse der Refraktion, Akkommodation und des Augenbinnendruckes in der Tierreihe. Med.-naturwiss Archiv Vol 1Google Scholar
- Helmholtz H (1855) Ueber die Accommodation des Auges. Graefe’s Arch Ophthalm 1(II):1–74Google Scholar
- Helmholtz H (1896) Handbuch der Physiologischen Optik, zweite Auflage. Verlag von Leopold Voss, Hamburg und LeipzigGoogle Scholar
- Henze MJ, Schaeffel F, Wagner H-J, Ott M (2004a) Accommodation behaviour during prey capture in the vietnamese leaf turtle (Geoemyda spengleri). J Comp Physiol A 190:139–146Google Scholar
- Henze MJ, Schaeffel F, Ott M (2004b) Variations in the off-axis refractive state in the eye of the vietnamese leaf turtle (Geoemyda spengleri). J Comp Physiol A 190:131–137Google Scholar
- Hess C (1909) Untersuchungen zur vergleichenden Physiologie und Morphologie des Akkommodationsvorganges. Nach gemeinsamen, mit Dr. Fischer angestellten Beobachtungen. Archiv für Augenheilkunde 62:345–392Google Scholar
- Hess C (1912) Untersuchungen zur vergleichenden Physiologie und Morphologie des Ciliarringes. Festschrift für H Spengel Zool Jb Suppl 15(3):155–176Google Scholar
- Hess C, Heine L (1898) Arbeiten aus dem Gebiet der Akkommodationslehre. Arch Ophthal 46:243–276CrossRefGoogle Scholar
- Howland HC (1991) Determination of ocular refraction. In: Charman N (ed) Vision and visual dysfunction, Vol 1 of visual optics and instrumentation. CRC Press, Boca Raton, pp 399–414Google Scholar
- Howland HC, Howland M, Murphy CJ (1993) Refractive state of the rhinoceros. Vision Res 33:2649–2651PubMedGoogle Scholar
- Hirschberg I (1882) Zur Dioptrik und Ophthalmoskopie der Fisch- und Amphibienaugen. Arch Anat Physiol Abt Physiol 1882:493–526Google Scholar
- Hueter RE, Murphy CJ, Howland M, Sivak JG, Paul-Murphy JR, Howland HC (2001) Refractive state and accommodation in the eyes of free-swimming versus restrained juvenile lemon sharks (Negaprion brevirostris). Vision Res 41:1885–1889PubMedGoogle Scholar
- Hughes A (1977) The topography of vision in mammals of contrasting life style: comparative optics and retinal organisation. In: Crescitelli F (ed) Handbook of Sensory Physiology VII (5). Springer, Berlin Heidelberg New York, pp 613–756Google Scholar
- Kahmann H (1932) Sinnesphysiologische Studien an Reptilien II: Über die Akkommodation im Schlangenauge mit Bemerkungen über die Akkommodation der Echsen und über den Akkommodationsapparat. Zool Jb Allg Zool und Physiol Tiere 52:295–337Google Scholar
- Kasthurirangan S, Vilupuru AS, Glasser A (2003) Amplitude dependent accommodation dynamics in humans. Vis Res 43:2945–2956PubMedGoogle Scholar
- Katzir G, Howland HC (2003) Corneal power and underwater accommodation in great cormorants (Phalacocorax carbo sinensis). J Exp Biol 206:833–841PubMedGoogle Scholar
- Kimura S, Niida T, Mukuno F, Ishikawa S (1997) Direct parasympathetic pathway from midbrain to ciliary muscles in cats and monkeys. Jpn J Ophthalmol 41:203–208PubMedGoogle Scholar
- Kopsch F (1892) Iris und Corpus ciliare des Reptilienauges nebst Bemerkungen über einige Augenteile. Inaugural-Dissertation BerlinGoogle Scholar
- Kröger RHH, Binder S (2000) Use of paper selectively absorbing long wavelengths to reduce the impact of educational near work on human refractive development. Br J Ophthalmol 84:890–893PubMedGoogle Scholar
- Kruger PB, Mathews S, Aggarwala KR, Yager D, Kruger ES (1995) Accommodation repsonds to changing contrast of long, middle and short spectral-waveband components of the retinal image. Vision Res 35:2415–2429PubMedGoogle Scholar
- Kruger PB, Mathews S, Katz M, Aggarwala KR, Nowbotsing S (1997) Accommodation without feedback suggests directional signals specify ocular focus. Vision Res 37:2511–2526PubMedGoogle Scholar
- Lauber H (1901) Beiträge zur Anatomie des vorderen Augenabschnittes der Wirbeltiere. Anatomische Hefte 69:369–454Google Scholar
- Lesser A (1914) Die Akkommodation der Ringelnatter. Inaugural-Dissertation Gotha 1914Google Scholar
- Manteuffel G, Wess O, Himstedt W (1977) Measurements of the dioptric apparatus in amphibian eyes and calculations of the visual acuity in water and air. Zool Jb Physiol 81:395–406Google Scholar
- Mathis U, Schaeffel F, Howland HC (1988) Visual optics in toads (Bufo americanus). J Comp Physiol A 163:201–213PubMedGoogle Scholar
- McCourt ME, Jacobs GH (1984) Refractive state, depth of focus and accommodation of the California ground squirrel (Spermophilus beecheyi). Vision Res 24:1261–1266PubMedGoogle Scholar
- Millodot M, Blough P (1971) The refractive state of the pigeon. Vision Res 11:1019–1022PubMedGoogle Scholar
- Murphy CJ, Howland HC (1986) On the gecko pupil and Schreiner’s disc. Vision Res 26:815–817PubMedGoogle Scholar
- Murphy CJ, Bellhorn RW, Williams T, Burns MS, Schaeffel F, Howland HC (1990) Refractive state, ocular anatomy, and accommodative range of the sea otter (Enhydra lutris). Vision Res 30:23–32PubMedGoogle Scholar
- Murphy CJ, Howland HC (1991) The functional significance of crescent-shaped pupils and multiple pupillary apertures. J Exp Zool Suppl 5:22–28Google Scholar
- Murphy CJ, Kern TJ, Howland HC (1992) Refractive state, corneal curvature, accommodative range and ocular anatomy of the Asian elephant (Elephas maximus). Vision Res 32:2013–2021PubMedGoogle Scholar
- Nellis DW, Sivak JG, McFarland WN, Howland HC (1989) Characteristics of the eye of the Indian mongoose (Herpestes auropunctatus). Can J Zool 67:2814–2820Google Scholar
- Northmore DPM, Granda AM (1991) Refractive state, contrast sensitivity, and resolution in the freshwater turtle Pseudemys scripta elegance, determined by visual evoked potentials. Vis Neurosci 7:675–678Google Scholar
- Ott M, Schaeffel F (1995) A negatively powered lens in the chameleon. Nature (Lond) 373:692–694Google Scholar
- Ott M, Schaeffel F, Kirmse W (1998) Binocular vision and accommodation in prey-catching chameleons. J Comp Physiol A 182:319–330Google Scholar
- Pettigrew JD, Collin SP (1995) Terrestrial optics in an aquatic eye: the sandlance Limnichthyes fasciatus (Creediidae, Teleostei). J Comp Physiol A 177:397–408Google Scholar
- Pettigrew JD, Collin SP, Ott M (1999) Convergence of specialized behaviour, eye movements and visual optics in the sandlance (Teleostei) and the chameleon (Reptilia). Curr Biol 9:421–424PubMedGoogle Scholar
- Roth G (1987) Visual behaviour in salamanders. Springer, Berlin Heidelberg New YorkGoogle Scholar
- Rucker FJ, Kruger PB (2001) Isolated short-wavelength sensitive cones can mediate a reflex accommodation response. Vision Res 41:911–922PubMedGoogle Scholar
- Scanlon JD, Lee MSY (2000) The pleistocene serpent Wonambi and the early evolution of snakes. Nature (Lond) 403:416–420Google Scholar
- Schachar RA, Tello C, Cudmore DP, Liebmann JM, Black TD, Ritch TD (1996) In vivo increase of the human lens equatorial diameter during accommodation. Am J Physiol 271:R670–R676PubMedGoogle Scholar
- Schaeffel F (1991) Underwater vision in semi-aquatic european snakes. Naturwissenschaften 78:373–375Google Scholar
- Schaeffel F (1994) Functional accommodation in birds. In: Davies MNO, Green PR (eds) Perception and motor control in birds. Springer, Berlin Heidelberg NewyorkGoogle Scholar
- Schaeffel F, Farkas L, Howland HC (1987) Infrared photoretinoscope. Appl Opt 26:1505–1509Google Scholar
- Schaeffel F, Howland HC (1987) Corneal accommodation in chick and pigeon. J Comp Physiol A 160:375–384PubMedGoogle Scholar
- Schaeffel F, Mathis U (1991) Underwater vision in semi-aquatic european snakes. Naturwissenschaften 78:373–375Google Scholar
- Schaeffel F, Wagner H (1992) Barn owls have symmetrical accommodation in both eyes, but independent pupillary responses to light. Vision Res 32:1149–1155PubMedGoogle Scholar
- Schaeffel F, Wilhelm H, Zrenner E (1993) Inter-individual variability in the dynamics of natural accommodation in humans: relation to age and refractive errors. J Physiol (Lond) 461:301–320Google Scholar
- Schaeffel F, Hagel G, Eikermann J, Collett T (1994) Lower-field myopia and astigmatism in amphibians and chickens. J Opt Soc Am A 11:487–497Google Scholar
- Seideman A, Schaeffel F (2002) Effects of longitudinal chromatic aberration on accommodation and emmetropization. Vision Res 42:2409–2417Google Scholar
- Seideman A, Schaeffel F (2003) An evaluation of the lag of accommodation using photorefraction. Vis Res 43:419–430Google Scholar
- Schmucker C, Schaeffel F (2004) A paraxial schematic eye model for the growing C57BL/6 mouse. Vision Res 44:1857–1867PubMedGoogle Scholar
- Schustermann RJ, Barrett B (1973) Amphibious nature of visual acuity in the Asian “clawless” otter. Nature (Lond) 244:518–519Google Scholar
- Schwenk K (2000) Feeding in lepidosaurs. In: Schwenk K (ed) Feeding: form, function and evolution in tetrapod vertebrates. Academic, San Diego, pp 175–291Google Scholar
- Sivak JG (1975) Accommodative lens movements in fishes: movement along the pupil axis vs movement along the pupil plane. Vision Res 15:825–828PubMedGoogle Scholar
- Sivak JG (1976a) Optics of the eye of the “four-eyed fish” (Anableps anableps). Vision Res 16:531–534PubMedGoogle Scholar
- Sivak JG (1976b) The accommodative significance of the “ramp" retina of the eye of the stingray.Vision Res 16:945–950PubMedGoogle Scholar
- Sivak JG (1977) The role of the spectacle in the visual optics of the snake eye. Vision Res 17:293–298PubMedGoogle Scholar
- Sivak JG (1980) Accommodation in vertebrates. In: Zadunaisky JA, Dacson H (eds) Current topics in in eye research. Academic, New YorkGoogle Scholar
- Sivak JG (2004) Through the lens clearly: phylogeny and development. IOVS 45:740–747Google Scholar
- Sivak JG and Woo GCS (1975) Accommodative lens movements in holosteans (Amia calva and Lepisosteus osseus oxyurus) and in the sea lamprey (Petromyzon marinus). Can J Zool 53:516–520CrossRefGoogle Scholar
- Stiles WS, Crawford BH (1933) The luminous effeciency of rays entering the eye pupil at different points. Proc R Soc Lond B 112:428–450Google Scholar
- Strenk SA, Semmlow JL (1995) Magnetic resonance images of the ciliary muscle and lens in presbyopes and non-presbyopes. Vision science and its applications. Optical Society of America, Washington DC pp 88–91Google Scholar
- Toates FM (1972) Accommodation function of the human eye. Physiol Rev 52:828–863PubMedGoogle Scholar
- Tretjakoff D (1906a) Der Musculus protractor lentis im Urodelenauge. Anat Anz 28:25–32Google Scholar
- Tretjakoff D (1906b) Die vordere Augenhälfte des Frosches. Z Wiss Zool 80:327–410Google Scholar
- Tscherning M (1920) Accommodation physiologic optics. The Keystone, Philadelphia, pp 192–228Google Scholar
- Underwood G (1970) The eye. In: Gans C, Parsons TS (eds) Biology of the Reptilia. Academic, LondonGoogle Scholar
- Verrier ML (1930) Contribution a l’étude de la vision chez les selaciens. Annales des Siences Naturales Zoologie 13: 5–54Google Scholar
- Wallace WC (1834) Discovery of a muscle in the eye of fishes. Am J Sci Arts 26:394Google Scholar
- Walls GL (1942) The vertebrate eye and its adaptive radiation. Cranbrook Institute of Science, Bloomfield Hills, pp 281–650Google Scholar
- Welsch U, Ramdohr S, Riedelsheimer B, Hebel R, Eisert R, Plotz J (2001) Microscopic anatomy of the eye of the deep-diving Antarctic Weddell seal (Leptonychotes weddellii). J Morphol 248:165–174PubMedGoogle Scholar
- Werner C (1983) Zielorientierung im Beutefangverhalten des Feuersalamanders Salamandra salamandra. Inaugural Dissertation, Technische Hochschule DarmstadtGoogle Scholar
- Werner C, Himstedt W (1984) Eye accommodation during prey capture behavior in salamanders (Salamandra salamandra L). Behav Brain Res 12:69–73PubMedGoogle Scholar
- van der Willigen RF, Frost BJ, Wagner H. (1998) Stereoscopic depth perception in the owl. Neuroreport 9:1233–1237PubMedGoogle Scholar
- Wilson BJ, Decker KE, Roorda A (2002) Monochromatic aberrations provide an odd error cue to focus direction. J Opt Soc Am A Opt Image Sci Vis 19:833–839PubMedGoogle Scholar
- Wilson RS (1997) Does the lens diameter increase or decrease during accommodation? Human accommodation studies: a new technique using infrared retro-illumination video photography and pixel unit measurements. Trans Am Ophthalmol Soc 95:261–270PubMedGoogle Scholar
- Woolf D (1956) A comparative cytological study of the ciliary muscle. Anat Rec 124:145–163PubMedGoogle Scholar
- Wychgram E (1912) Über das Ligamentum pectinatum im Vogelauge. Arch Vergl Ophthalmol 3:22–29Google Scholar
- Zardoya R, Meyer A (2001) The evolutionary position of turtles revised. Naturwissenschaften 88:193–200PubMedGoogle Scholar