Journal of Comparative Physiology A

, Volume 192, Issue 1, pp 1–25 | Cite as

The visual ecology of fiddler crabs

  • Jochen Zeil
  • Jan M. Hemmi


With their eyes on long vertical stalks, their panoramic visual field and their pronounced equatorial acute zone for vertical resolving power, the visual system of fiddler crabs is exquisitely tuned to the geometry of vision in the flat world of inter-tidal mudflats. The crabs live as burrow-centred grazers in dense, mixed-sex, mixed-age and mixed-species colonies, with the active space of an individual rarely exceeding 1 m2. The full behavioural repertoire of fiddler crabs can thus be monitored over extended periods of time on a moment to moment basis together with the visual information they have available to guide their actions. These attributes make the crabs superb subjects for analysing visual tasks and the design of visual processing mechanisms under natural conditions, a prerequisite for understanding the evolution of visual systems. In this review we show, on the one hand, how deeply embedded fiddler crab vision is in the behavioural and the physical ecology of these animals and, on the other hand, how their behavioural options are constrained by their perceptual limitations. Studying vision in fiddler crabs reminds us that vision has a topography, that it is context-dependent and pragmatic and that there are perceptual limits to what animals can know and therefore care about.


Visual ecology Behaviour Compound eyes Fiddler crabs 



We acknowledge financial support from the Swiss Science Foundation to JMH, from the Human Frontiers Science Program to JZ, from the Centre for Visual Sciences to JMH and JZ, from the Australian National University’s Major Equipment fund and the Research School of Biological Sciences Biotechnology fund to JZ. We thank Waltraud Pix for her keen eye for fiddler crabs and her support with fieldwork and Marilyn Ball for sharing the casi, as well as Martin Hofmann and Katharina Siebke for their support in maintaining it and in analysing data. We are grateful to Ali Alkaladi, Tanya Detto, Martin How, and Doekele Stavenga for allowing us to use unpublished data. We thank Pat Backwell, Norbert Boeddeker, Tanya Detto, Martin How, Michael Jennions, Richard Peters, Waltraud Pix and Mandyam Srinivasan for their constructive comments on earlier versions of the manuscript.


  1. Altevogt R (1959) Ökologische und ethologische Studien an Europas einziger Winkerkrabbe Uca tangeri Eydoux. Z Morph Ökol Tiere 48:123–146CrossRefGoogle Scholar
  2. Arikawa K, Kinoshita M, Stavenga DG (2004) Color vision and retinal organization in butterflies. In Prete FR (ed) Complex worlds from simpler nervous systems. MIT, Cambridge, pp 193–219Google Scholar
  3. Aspey WP (1971) Inter-species sexual discrimination and approach-avoidance confict in two species of fiddler crabs, Uca pugnax and Uca pugilator. Anim Behav 19:669–676Google Scholar
  4. Backwell PRY, Jennions MD (2004) Coalition among male fiddler crabs. Nature 430:417CrossRefPubMedGoogle Scholar
  5. Backwell PRY, Passmore NI (1996) Time constraints and multiple choice criteria in the sampling behaviour and mate choice of the fiddler crab, Uca annulipes. Behav Ecol Sociobiol 38:407–416CrossRefGoogle Scholar
  6. Backwell PRY, Ohara PD, Christy JH (1998a) Prey availability and selective foraging in shorebirds. Anim Behav 55:1659–1667CrossRefGoogle Scholar
  7. Backwell PRY, Jennions M, Passmore N, Christy J (1998b) Synchronized courtship in fiddler crabs. Nature 391:31–32CrossRefGoogle Scholar
  8. Backwell PRY, Jennions MD, Christy JH, Passmore NI (1999) Female choice in the synchronously waving fiddler crab Uca annulipes. Ethology 105:415–421CrossRefGoogle Scholar
  9. Baddeley R (2000) Introductory information theory and the brain. In Baddeley R, Hancock P, Földiak P (eds) Information theory and the brain. Cambridge University Press, Cambridge, pp 1–19Google Scholar
  10. Baddeley R, Abbott LF, Booth MC, Sengpiel F, Freeman T, Wakeman EA, Rolls ET (1997) Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc R Soc Lond B 264:1775–1783CrossRefGoogle Scholar
  11. Barnes WJP, Johnson AP, Horseman GB, Macauley MWS (2002) Computer-aided studies of vision in crabs. Mar Freshw Behav Physiol 35:37–56CrossRefGoogle Scholar
  12. Boeddeker N, Lindemann JP, Egelhaaf M, Zeil J (2005) Responses of blowfly motion sensitive neurons to reconstructed optic flow along outdoor flight paths. J Comp Physiol A 191:1143–1155CrossRefGoogle Scholar
  13. Bouskila A, Blumstein DT (1992) Rules of thumb for predation hazard assessment: predictions from a dynamical model. Am Nat 139:161–176CrossRefGoogle Scholar
  14. Burford FRL, McGregor PK, Oliviera RF (1998) Chorusing by male European fiddler crabs, Uca tangeri: a study of visual communication networks. Acta Ethol 1:33–41Google Scholar
  15. Burford FRL, McGregor PK, Oliviera RF (2000) Response of fiddler crabs (Uca tangeri) to video playback in the field. Acta Ethol 3:55–59CrossRefGoogle Scholar
  16. Cannicci S, Fratini S, Vannini M (1999) Short-range homing in fiddler crabs (Ocypodidae, Genus Uca): a homing mechanism not based on local visual landmarks. Ethology 105:867–880CrossRefGoogle Scholar
  17. Christy JH (1983) Female choice in the resource-defense mating system of the sand fiddler crab, Uca pugilator. Behav Ecol Sociobiol 12:169–180CrossRefGoogle Scholar
  18. Christy JH (1995) Mimicry, mate choice and the sensory trap hypothesis. Am Nat 146:171–181CrossRefGoogle Scholar
  19. Christy JH, Salmon M (1984) Ecology and evolution of mating systems of fiddler crabs (Genus Uca). Biol Rev 59:483–509CrossRefGoogle Scholar
  20. Christy JH, Salmon M (1991) Comparative studies of reproductive behaviour in mantis shrimps and fiddler crabs. Am Zool 31:329–337Google Scholar
  21. Christy JH, Schober UM (1994) A test for resource-defence mating in the fiddler crab Uca beebei. Anim Behav 48:795–802CrossRefGoogle Scholar
  22. Christy JH, Backwell PRY, Goshima S, Kreuter T (2002) Sexual selection for structure building by courting male fiddler crabs: an experimental study of behavioral mechanisms. Behav Ecol 13:366–374CrossRefGoogle Scholar
  23. Christy JH, Backwell PRY, Schober U (2003a) Interspecific attractiveness of structures built by courting male fiddler crabs: experimental evidence of a sensory trap. Behav Ecol Sociobiol 53:84–91Google Scholar
  24. Christy JH, Baum JK, Backwell PRY (2003b) Attractiveness of sand hoods built by courting male fiddler crabs, Uca musica: test of a sensory trap hypothesis. Anim Behav 66:89–94CrossRefGoogle Scholar
  25. Collett TS, Harkness LIK (1982) Depth vision in animals. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behaviour. MIT, Cambridge, pp 111–176Google Scholar
  26. Collin SP, Pettigrew JD (1988a) Retinal topography in reef teleosts. I. Some species with well-developed areae but poorly-developed streaks. Brain Behav Evol 31:269–282Google Scholar
  27. Collin SP, Pettigrew JD (1988b) Retinal topography in reef teleosts. II. Some species with prominent horizontal streaks and high-density areae. Brain Behav Evol 31:283–295Google Scholar
  28. Crane J (1957) Basic patterns of display in fiddler crabs (Ocypodidae, Genus Uca). Zoologica 42:68–82Google Scholar
  29. Crane J (1975) Fiddler crabs of the world. Princeton University Press, PrincetonGoogle Scholar
  30. Dahmen H (1991) Eye specialisation in water striders: An adaptation to life in a flat world. J Comp Physiol A 169:623–632CrossRefGoogle Scholar
  31. David SV, Vinje WE, Gallant JL (2004) Natural stimulus statistics alter the receptive field structure of V1 neurons. J Neurosci 6991–7006Google Scholar
  32. deRivera CE (2005) Long searches for male-defended breeding burrows allow female fiddler crabs, Uca crenulata, to release larvae on time. Anim Behav 70:289–297CrossRefGoogle Scholar
  33. deRivera CE, Vehrencamp SL (2001) Male versus female mate searching in fiddler crabs: A comparative analysis. Behav Ecol 12:182–191CrossRefGoogle Scholar
  34. deRivera CE, Backwell PRY, Christy JH, Vehrencamp SL (2003) Density affects female and male mate searching in the fiddler crab, Uca beebei. Behav Ecol Sociobiol 53:72–83Google Scholar
  35. Detto T, Zeil J, Magrath R, Hunt S (2004) Sex, size and colour in the semaphore crab Heloecius cordiformis. J Exp Mar Biol Ecol 302:1–15CrossRefGoogle Scholar
  36. Eckert MP, Buchsbaum G (1993) Effect of tracking strategies on the velocity structure of two-dimensional image sequences. J Opt Soc Am A 10:1993–1996CrossRefGoogle Scholar
  37. Eckert MP, Zeil J (2001) Towards an ecology of motion vision. In Zanker JM, Zeil J (eds) Motion vision: computational, neural and ecological constraints. Springer, Berlin Heidelberg New York, pp 333–369Google Scholar
  38. Ens BJ, Klaassen M, Zwarts L (1993) Flocking and feeding in the fiddler crab (Uca tangeri): Prey availability as risk-taking behaviour. Neth J Sea Res 31:477–494CrossRefGoogle Scholar
  39. Fernández-Juricic E, Erichsen JT, Kacelnik A (2004) Visual perception and social foraging in birds. Trends Ecol Evol 19:25–31CrossRefPubMedGoogle Scholar
  40. Field DJ (1987) Relations between the statistics of natural images and the response properties of cortical cells. J Opt Soc Am A 4:2379–2394PubMedGoogle Scholar
  41. Gibson JJ (1950) The perception of the visual world. Riverside, CambridgeGoogle Scholar
  42. von Hagen H-O (1962) Freilandstudien zur Sexual- und Fortpflanzungsbiologie von Uca tangeri in Andalusien. Z Morphol Ökol Tiere 51:611–725CrossRefGoogle Scholar
  43. von Hagen H-O (1967) Nachweis einer kinästhetischen Orientierung bei Uca rapax. Z Morphol Ökol Tiere 58:301–320CrossRefGoogle Scholar
  44. von Hagen H-O (1970) Zur Deutung langstieliger und gehörnter Augen bei Ocypodiden (Decapoda, Brachyura). Forma et functio 2:13–57Google Scholar
  45. von Hagen H-O (1984) Visual and acoustic display in Uca mordax and U. burgersi, sibling species of neotropical fiddler crabs. II. Vibration signals. Behaviour 91:204–228Google Scholar
  46. von Hagen H-O (1993) Waving displays in females of Uca polita and of other Australian fiddler crabs. Ethology 93:3–20CrossRefGoogle Scholar
  47. van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M (2005) Function and coding in the blowfly H1 neuron during naturalistic optic flow. J Neurosci 25:4343–4352CrossRefPubMedGoogle Scholar
  48. Hemmi JM (2005a) Predator avoidance in fiddler crabs: 1 Escape decisions in relation to the risk of predation. Anim Behav 69:603–614CrossRefGoogle Scholar
  49. Hemmi JM (2005b) Predator avoidance in fiddler crabs: 2 The visual cues. Anim Behav 69:615–625CrossRefGoogle Scholar
  50. Hemmi JM, Grünert U (1999) Distribution of photoreceptor types in the retina of a marsupial, the tammar wallaby (Macropus eugenii). Vis Neurosci 16:291–302CrossRefPubMedGoogle Scholar
  51. Hemmi JM, Zeil J (2001) Habituation and the categorisation of significant events in the visual world of fiddler crabs. In: International invertebrate vision conference, Lund, SwedenGoogle Scholar
  52. Hemmi JM, Zeil J (2003a) Robust judgement of inter-object distance by an arthropod. Nature 421:160–103CrossRefGoogle Scholar
  53. Hemmi JM, Zeil J (2003b) Burrow surveillance in fiddler crabs. I. Description of behaviour. J Exp Biol 206:3935–3950CrossRefGoogle Scholar
  54. Hemmi JM, Zeil J (2003c) Burrow surveillance in fiddler crabs. II. The sensory cues. J Exp Biol 206:3951–3961CrossRefGoogle Scholar
  55. Hemmi JM, Zeil J (2005) Animals as prey: sensory-motor abilities and flexibility of behaviour in an arthropod. Mar Ecol Prog Ser 287:274–278Google Scholar
  56. Herrnkind WF (1983) Movement patterns and orientation. In Vernberg FJ, Vernberg WB (eds) The biology of Crustacea, vol 7. Academic, New York, pp 41–105Google Scholar
  57. Horch K, Salmon M, Forward R (2002) Evidence for a two pigment visual system in the fiddler crab, Uca thayeri. J Comp Physiol A 188:493–499CrossRefGoogle Scholar
  58. Hughes A (1977) The topography of vision in mammals of contrasting life style: Comparative optics and retinal organization. In: Crescitelli F (ed) Handbook of sensory physiology, vol VII/5. Springer, Berlin Heidelberg New York, pp 613–756Google Scholar
  59. Hugie DM (2004) A waiting game between the black-bellied plover and its fiddler crab prey. Anim Behav 67:823–831CrossRefGoogle Scholar
  60. Hyatt GW (1977a) Field studies of size-dependent changes in waving display and other behavior in the fiddler crab, Uca pugilator (Brachyura, Ocypodidae). Mar Behav Physiol 4:283–292Google Scholar
  61. Hyatt GW (1977b) Quantitative analysis of size-dependent variation in the fiddler crab waving display (Uca pugilator, Brachyura, Ocypodidae). Mar Behav Physiol 5:19–36Google Scholar
  62. Hyatt GW, Salmon M (1979) Combat in the fiddler crabs Uca pugilator and U. pugnax: a quantitative analysis. Behaviour 65:182–210Google Scholar
  63. Isibarne OO, Martinez MM (1999) Predation on the Southwestern Atlantic fiddler crab (Uca uruguayensis) by migratory shorebirds (Pluvialis dominica, P. squatarola, Arenaria interpres, and Numenius phaeopus). Estuaries 22:47–54Google Scholar
  64. Jennions MD, Backwell PRY (1996) Residency and size affect fight duration and outcome in the fiddler crab Uca annulipes. Biol J Linn Soc 57:293–306CrossRefGoogle Scholar
  65. Jennions MD, Backwell PRY (1998) Variation in courtship rate in the fiddler crab Uca annulipes: is it related to male attractiveness? Behav Ecol 9:605–611CrossRefGoogle Scholar
  66. Jennions MD, Petrie M (1997) Variation in mate choice and mating preferences: a review of causes and consequences. Biol Rev Cambridge Phil Soc 72:283–327CrossRefGoogle Scholar
  67. Jennions MD, Backwell PRY, Murai M, Christy JH (2003) Hiding behaviour in fiddler crabs: how long should prey hide in response to a potential predator? Anim Behav 66:251–257CrossRefGoogle Scholar
  68. Johnson AP, Barnes WJP, MacCauley MWS (2004a) Effects of light intensity and pattern contrast on the ability of the land crab, Cardisoma guanhumi, to separate optic flow components. Vis Neurosci 21:895–904CrossRefGoogle Scholar
  69. Johnson AP, Barnes WJP, MacCauley MWS (2004b) Local mechanisms for the separtion of optic flow-field components in the land crab, Cardisoma guanhumi: A role for motion parallax? Vis Neurosci 21:905–911CrossRefGoogle Scholar
  70. Kayser C, Körding KP, König P (2004) Processing of complex stimuli and natural scenes in the visual cortex. Curr Opin Neurobiol 14:468–473CrossRefPubMedGoogle Scholar
  71. Kern R, van Hateren H, Michaelis C, Lindemann JP, Egelhaaf M (2005) Function of a fly motion-sensitive neuron matches eye movements during free flight. PLOS 3(6):e171CrossRefGoogle Scholar
  72. Koenderink JJ, van Doorn AJ (1987) Facts on optic flow. Biol Cybernet 56:247–254CrossRefGoogle Scholar
  73. Koga T, Backwell PRY, Jennions MD, Christy JH (1998) Elevated predation risk changes mating behaviour and courtship in a fiddler crab. Proc R Soc Lond B 265:1385–1390CrossRefGoogle Scholar
  74. Koops MA (2004) Reliability and the value of information. Anim Behav 67:103–111CrossRefGoogle Scholar
  75. Körding KP, Kayser C, Einhäuser W, König P (2004) How are complex cell properties adapted to the statistics of natural stimuli? J Neurophysiol 91:206–212CrossRefPubMedGoogle Scholar
  76. Korte R (1965) Durch polarisiertes Licht hervorgerufene Optomotorik bei Uca tangeri. Experientia 21:98CrossRefPubMedGoogle Scholar
  77. Kunze P (1963) Der Einfluss der Grösse bewegter Felder auf den optokinetischen Augennystagmus der Winkerkrabbe (Uca pugnax). Ergeb Biol 26:55–62Google Scholar
  78. Land MF (1989) Variations in the structure and design of compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 90–111Google Scholar
  79. Land MF (1997) Visual acuity in insects. Ann Rev Entomol 42:147–177CrossRefGoogle Scholar
  80. Land MF (1999) The roles of head movements in the search and capture strategy of a tern (Aves, Laridae). J Comp Physiol A 184:265–272CrossRefGoogle Scholar
  81. Land MF, Collett TS (1997) A survey of active vision in invertebrates. In: Srinivasan MV, Venkatesh S (eds) From living eyes to seeing machines. Oxford University Press, Oxford, pp 16–36Google Scholar
  82. Land MF, Layne JE (1995a) The visual control of behaviour in fiddler crabs I. Resolution, thresholds and the role of the horizon. J Comp Physiol A 177:81–90Google Scholar
  83. Land MF, Layne JE (1995b) The visual control of behaviour in fiddler crabs II. Tracking control systems in courtship and defence. J Comp Physiol A 177:91–103Google Scholar
  84. Layne JE (1998) Retinal location is the key to identifying predators in fiddler crabs (Uca pugilator). J Exp Biol 201:2253–2261PubMedGoogle Scholar
  85. Layne J, Land MF, Zeil J (1997) Fiddler crabs use the visual horizon to distinguish predators from conspecifics: a review of the evidence. J Mar Biol 77:43–54Google Scholar
  86. Layne JE, Barnes WJP, Duncan LMJ (2003a) Mechanisms of homing in the fiddler crab Uca rapax: 1. Spatial and temporal characteristics of a system of small-scale navigation. J Exp Biol 206:4413–4423CrossRefGoogle Scholar
  87. Layne JE, Barnes WJP, Duncan LMJ (2003b) Mechanisms of homing in the fiddler crab Uca rapax: 2: Information sources and frame of reference for a path integration system. J Exp Biol 206:4425–4442CrossRefGoogle Scholar
  88. Lima SL (2002) Putting predators back into behavioral predator-prey interactions. Trends Ecol Evol 17:70–75CrossRefGoogle Scholar
  89. Luttbeg B (2002) Assessing the robustness and optimality of alternative decision rules with varying assumptions. Anim Behav 63:805–814CrossRefGoogle Scholar
  90. Luttbeg B, Schmitz OJ (2000) Predator and prey models with flexible individual behavior and imperfect information. Am Nat 155:669–683CrossRefPubMedGoogle Scholar
  91. Lynch DK, Livingston W (1995) Color and light in nature. Cambridge University Press, CambridgeGoogle Scholar
  92. MacFarlane GR, King SA (2002) Observer presence influences behaviour of the semaphore crab, Heloecius cordiformis. Anim Behav 63:1191–1194CrossRefGoogle Scholar
  93. McLain DK, Pratt AE, Kirschstein K (2005) Predator-driven fragmentation of fiddler crab droves into selfish miniherds of biased composition. J Exp Mar Biol Ecol 315:1–15CrossRefGoogle Scholar
  94. McNaughton BL, Barnes CA, Gerrard JL, Gothard K, Jung MW, Knierim JJ, Kudrimoti H, Qin Y, Skaggs WE, Suster M, Weaver KL (1996) Deciphering the hippocampal polyglot: the hippocampus as a path integration system. In: Wehner R, Lehrer M, Harvey WR (eds) Navigation. J Exp Biol 199:173–185Google Scholar
  95. Müller W (1989) Untersuchungen zur akustisch-vibratorischen Kommunikation und Ökologie tropischer und subtropischer Winkerkrabben. Zool Jhg Abt Syst Ökol Geogr Tiere 116:47–114Google Scholar
  96. Murai M, Koga T, Yong H-S (2002) The assessment of female reproductive state during courtship and scramble competition in the fiddler crab, Uca paradussumieri. Behav Ecol Sociobiol 52:137–142CrossRefGoogle Scholar
  97. Nalbach H-O (1990a) Multisensory control of eyestalk orientation in decapod crustaceans: An ecological approach. J Crust Biol 10:382–399Google Scholar
  98. Nalbach H-O (1990b) Visually elicited escape in crabs. In: Wiese K, Krent W-D, Tautz J, Reichert H, Mulloney B (eds) Frontiers in Crustacean Neurobiology. Birkhäuser, Basel, pp 165–172Google Scholar
  99. Nalbach H-O, Nalbach G (1987) Distribution of optokinetic sensitivity over the eye of crabs: its relation to habitat and possible role in flow-field analysis. J Comp Physiol A 160:127–135CrossRefGoogle Scholar
  100. Nalbach H-O, Zeil J, Forzin L (1989) Multisensory control of eye-stalk orientation in space: Crabs from different habitats rely on different senses. J Comp Physiol A 165:643–649CrossRefGoogle Scholar
  101. Nunnemacher RF (1966) The fine structure of optic tracts of Decapoda. In Bernhard CG (ed) The functional organisation of the compound eye. Pergamon, Oxford, pp 363–376Google Scholar
  102. Oliveira RF, Machado JL, Jordão JM, Burford FL, Latruffe C, McGregor PK (2000) Human exploitation of male fiddler crab claws: behavioural consequences and implications for conservation. Anim Conserv 3:1–5CrossRefGoogle Scholar
  103. Ooi TL, Wu B, He ZJJ (2001) Distance determined by the angular declination below the horizon. Nature 414:197–200CrossRefPubMedGoogle Scholar
  104. Palmer JD (1990) The rhythmic lives of crabs. Bioscience 40:352–358Google Scholar
  105. Passaglia CL, Dodge FA, Herzog E, Jackson S, Barlow R (1997) Deciphering a neural code for vision. Proc Natl Acad Sci USA 94:12649–12654CrossRefPubMedGoogle Scholar
  106. Paul H, Barnes WJP, Varjú D (1998) Roles of eyes, leg proprioceptors and statocysts in the compensatory eye movements of freely walking land crabs (Cardisoma guanhumi). J Exp Biol 201:3395–3409PubMedGoogle Scholar
  107. Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems for hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40CrossRefPubMedGoogle Scholar
  108. Peters RA, Clifford CWG, Evans CS (2002) Measuring the structure of dynamic visual signals. Anim Behav 64:131–146CrossRefGoogle Scholar
  109. Pope D (2005) Waving in a crowd: fiddler crabs signal in networks. In: McGregor P (ed) Animal communication networks. Cambridge University Press, Cambridge, pp 252–276Google Scholar
  110. Pratt AE, McLain DK, Berry AS (2005) Variation in the boldness of courting sand fiddler crabs (Uca pugilator). Ethology 111:63–76CrossRefGoogle Scholar
  111. Robertson JR, Fudge JA, Vermeer GK (1981) Chemical and live feeding stimulants of the sand fiddler crab, Uca pugilator (Bosc). J Exp Mar Biol Ecol 53:47–64CrossRefGoogle Scholar
  112. Salmon M (1965) Waving display and sound production in the courtship behavior of Uca pugilator, with comparisons to U. minax and U. pugnax. Zool NY 50:123–150Google Scholar
  113. Salmon M (1984) The courtship, aggression and mating system of a “primitive” fiddler crab (Uca vocans: Ocypodidae). Trans Zool Soc Lond 37:1–50Google Scholar
  114. Salmon M, Hyatt GW (1983) Communication. In: Vernberg FJ, Vernberg WG (eds) The biology of Crustacea, vol 7. Behavior and ecology. Academic, New York, pp 1–40Google Scholar
  115. Salmon M, Stout JF (1962) Sexual discrimination and sound production in Uca pugilator Bosc. Zool NY 47:15–19Google Scholar
  116. Salmon M, Hyatt GW, McCarthy K, Costlow JD (1978) Display specificity and reproductive isolation in the fiddler crabs, Uca panacea and U. pugilator. Z Tierpsychol 48:251–276Google Scholar
  117. Schöne H (1968) Agonistic and sexual display in aquatic and semi-terrestrial brachyuran crabs. Am Zool 8:641–654Google Scholar
  118. Sedgwick HA (1983) Environment-centered representation of spatial layout: Available visual information from texture and perspective. In: Beck J, Hope B, Rosenfeld A (eds) Human and machine vision. Academic, New York, pp 425–458Google Scholar
  119. Shaw SR, Stowe S (1982) Photoreception. In: Atwood HL, Sandeman DC (eds) The biology of Crustacea, vol. 3. Neurobiology: structure and function. Academic, New York, pp 291–367Google Scholar
  120. Shih H-T, Mok H-K, Chang H-W, Lee S-C (1999) Morphology of Uca formosensis Rathburn, 1921 (Crustacea: Decapoda: Ocypodidae), an endemic fiddler crab from Taiwan, with notes on its ecology. Zool Stud 38:164–177Google Scholar
  121. Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24:1193–1216CrossRefPubMedGoogle Scholar
  122. Snyder AW, Menzel R, Laughlin SB (1973) Structure and function of the fused rhabdom. J Comp Physiol 87:99–135CrossRefGoogle Scholar
  123. Snyder AW, Bossomaier TR, Hughes A (1986) Optical image quality and the cone mosaic. Science 231:499–501PubMedGoogle Scholar
  124. Sparks DL (2005) An argument for using ethologically “natural” behaviours as estimates of unobservable sensory processes. Focus on “Sound localization performance in the cat: The effects of restraining the head”. J Neurophysiol 93:1136–1137CrossRefPubMedGoogle Scholar
  125. Srinivasan MV (1993) How insects infer range from visual motion. In: Miles FA, Wallman J (eds) Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 139–156Google Scholar
  126. Stavenga DG (2002) Colour in the eyes of insects. J Comp Physiol A 188:337–348CrossRefGoogle Scholar
  127. Stephens DW (1993) Learning and behavioural ecology: incomplete information and environmental predictability. In: Papaj DR, Lewis AC (eds) Insect learning: Ecological and evolutionary perspectives. Chapman & Hall, New York, pp 195–217Google Scholar
  128. Sturmbauer C, Levinton JS, Christy J (1996) Molecular phylogeny analysis of fiddler crabs: Test of the hypothesis of increasing behavioural complexity in evolution. Proc Natl Acad Sci USA 93:10855–10857CrossRefPubMedGoogle Scholar
  129. Sztarker J, Tomsic D (2004) Binocular visual integration in the crustacean nervous system. J Comp Physiol A 190:951–962Google Scholar
  130. Takeda S (2003) Mass wandering in the reproductive season by the fiddler crab Uca perplexa (Decapoda: Ocypodidae). J Crust Biol 23:723–728Google Scholar
  131. Thurman CL (1988) Rhythmic physiological color change in crustacea: a review. Comp Biochem Physiol 91(C):171–185Google Scholar
  132. Tomsic D, Massoni V, Maldonado H (1993) Habituation to a danger stimulus in two semiterrestrial crabs: ontogenetic, ecological and opioid modulation correlates. J Comp Physiol A 173:621–633CrossRefGoogle Scholar
  133. Tomsic D, Berón de Astrada M, Sztarker J (2003) Identification of individual neurons reflecting short- and long-term visual memory in an arthropod. J Neurosci 23:8539–8546PubMedGoogle Scholar
  134. Viscido SV, Wethey DS (2002) Quantitative analysis of fiddler crab flock movements: evidence for ‘selfish herd’ behaviour. Anim Behav 63:735–741CrossRefGoogle Scholar
  135. Walker I (1972) Habituation to disturbance in the fiddler crab (Uca annulipes) in its natural environment. Anim Behav 20:139–146Google Scholar
  136. Wehner R (1987) ‘Matched filters’—neural models of the external world. J Comp Physiol A 161:511–531CrossRefPubMedGoogle Scholar
  137. Wehner R (2001) Polarization vision – a uniform sensory capacity? J Exp Biol 204:2589–2596PubMedGoogle Scholar
  138. Weissburg M (1992) Functional analysis of fiddler crab foraging: sex-specific mechanics and constraints in Uca pugnax (Smith). J Exp Mar Biol Ecol 156:105–124CrossRefGoogle Scholar
  139. Welton NJ, McNamara JM, Houston AI (2003) Assessing predation risk: optimal behaviour and rules of thumb. Theor Pop Biol 64:417–430CrossRefGoogle Scholar
  140. Wiersma CAG, Roach JLM, Glantz RM (1982) Neural integration in the optic system. In: Sandeman DC, Atwood HL (eds) The biology of Crustacea, vol 4. Neural integration and behavior. Academic, New York, pp 1–31Google Scholar
  141. Wolfarth B (1993) Observations on the behaviour of the European fiddler crab Uca tangeri. Mar Ecol Prog Ser 100:111–118Google Scholar
  142. Yamaguchi T, Tabata S (2005) Territory usage and defence of the fiddler crab, Uca lactea (De Haan) (Decapoda, Brachyura, Ocypodidae). Crustaceana 77:1055–1080CrossRefGoogle Scholar
  143. Zeil J (1990) Substratum slope and the alignment of acute zones in semi-terrestrial crabs (Ocypode ceratophthalmus). J Exp Biol 152:573–576Google Scholar
  144. Zeil J (1998) Homing in fiddler crabs (Uca lactea annulipes and Uca vomeris: Ocypodidae). J Comp Physiol A 183:367–377CrossRefGoogle Scholar
  145. Zeil J, Al-Mutairi M (1996) The variation of resolution and of ommatidial dimensions in the compound eyes of the fiddler crab Uca lactea annulipes (Ocypodidae, Brachyura, Decapoda). J Exp Biol 199:1569–1577PubMedGoogle Scholar
  146. Zeil J, Hofmann M (2001) Signals from ‘crabworld’: Cuticular reflections in a fiddler crab colony. J Exp Biol 204:2561–2569PubMedGoogle Scholar
  147. Zeil J, Layne J (2002) Path integration in fiddler crabs and its relation to habitat and social life. In: Wiese K (ed) Crustacean experimental systems in neurobiology. Springer, Berlin Heidelberg New York, pp 227–247Google Scholar
  148. Zeil J, Zanker JM (1997) A glimpse into crabworld. Vis Res 37:3417–3426CrossRefPubMedGoogle Scholar
  149. Zeil J, Nalbach G, Nalbach H-O (1986) Eyes, eye stalks and the visual world of semi-terrestrial crabs. J Comp Physiol A 159:801–811CrossRefGoogle Scholar
  150. Zeil J, Nalbach G, Nalbach H-O (1989) Spatial vision in a flat world: Optical and neural adaptations in arthropods. In: Singh RN, Strausfeld NJ (eds) Neurobiology of sensory systems. Plenum, New York, pp 123–137Google Scholar
  151. Zeil J, Cronin T, Hemmi JM, Jordão J, Marshall J, Shashar N, Stavenga DG, Vorobyev M (2004) Reconstructing Vision in Fiddler Crabs. I: Eyes, environment and signals. In: 7th Congress of the international society for neuroethology, Nyborg, Denmark AugustGoogle Scholar
  152. Zwarts L (1985) The winter exploitation of fiddler crabs Uca tangeri by waders in Guinea-Bissau. Ardea 73:3–12Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Centre for Visual Sciences, Research School of Biological SciencesThe Australian National UniversityCanberraAustralia

Personalised recommendations