Advertisement

Journal of Comparative Physiology A

, Volume 191, Issue 1, pp 75–84 | Cite as

Light dependence of oxygen consumption by blowfly eyes recorded with a magnetic diver balance

  • Tina Pangršič
  • Peter Stušek
  • Gregor Belušič
  • Gregor ZupančičEmail author
Original Paper

Abstract

We measured the oxygen (O2) consumption of isolated blowfly eyes using a magnetic diver balance, a device for high-resolution volumetric O2 consumption measurements. The light-induced O2 consumption is at most three times the value of the dark consumption, which is 0.6 nl O2 s−1 eye−1, and is in good agreement with the estimates based on electrophysiological data. With longer stimuli the increase follows a double exponential time course. The respective time constants are approximately 2 and 20 s and show no dependence on light intensity, whereas the dependence of amplitudes can be fitted by a Hill equation. Decreasing the stimulus duration reveals that the peak in O2 consumption overshoots the time course induced by long stimuli. We suggest this may be a general feature of mitochondrial activation. The dependence of the O2 consumption peak on stimulus duration at high light intensity has a hump with stimulus durations of 10–20 ms, coinciding with the stimulus durations that start to induce the adaptation of the receptor potential.

Keywords

Oxygen consumption Blowfly Photoreceptor Mitochondria Volumetric measurement 

Abbreviations

TRP

Transient receptor potential

TRPL

Transient receptor potential-like

Notes

Acknowledgements

The experiments comply with the “Principles of Animal Care”, publication No. 86-23, revised 1985, of the National Institute of Health, and also with the Animal Protection Law of Republic of Slovenia (Zakon o zaščiti živali, Uradni list RS, št. 98-4617/1999, p. 14645). Work was supported by the Ministry of Education, Science and Sports of the Republic of Slovenia (grant J1-1593, research program P0-0524-0481). We wish to thank Dr. R. Paulsen (University Karlsruhe, Germany) for supplying us with fresh batches of blowflies several times.

References

  1. Autrum H, Tscharntke H (1962) Der Sauerstoffverbrauch der Insektenretina im Licht und im Dunkeln. Z Vergl Physiol 45:695–710CrossRefGoogle Scholar
  2. Brzin M, Oman S (1975) The magnetic diver differential microgasometer. Anal Biochem 70:526–536Google Scholar
  3. Duchen MR (1992) Ca2+ dependent changes in the mitochondrial energetics of single mouse sensory neurones. Biochem J 283:41–50PubMedGoogle Scholar
  4. Duchen M (2000) Mitochondria and calcium: from cell signalling to cell death. J Physiol 529:57–68PubMedGoogle Scholar
  5. Gerster U (1997) A quantitative estimate of flash-induced Ca2+- and Na+-influx and Na+/Ca2+-exchange in blowfly Calliphora photoreceptors. Vision Res 37:2477–2485CrossRefPubMedGoogle Scholar
  6. Gerster U, Stavenga DG, Backhaus W (1997) Na+/K+-pump activity in photoreceptors of the blowfly Calliphora: a model analysis based on membrane potential measurements. J Comp Physiol A 180:113–122CrossRefGoogle Scholar
  7. Hamdorf K, Kaschef AH (1964) Der Sauerstoffverbrauch des Facettenauges von Calliphora erythrocephala in Abhängigkeit von der Temperatur und dem Ionenmilieu. Z Vergl Physiol 48:251–265Google Scholar
  8. Hamdorf K, Hochstrate P, Höglund G, Burbach B, Wiegand U (1988) Light activation of the sodium pump in blowfly photoreceptors. J Comp Physiol A 162:285–300Google Scholar
  9. Hanke W, Hamdorf K, Horn E, Schlieper C (1977) Praktikum der Zoophysiologie, Sinnesphysiologie. Gustav Fischer Verlag, Stuttgart, 242 ppGoogle Scholar
  10. Jansonius NM (1990) Properties of the sodium pump in the blowfly photoreceptor cell. J Comp Physiol A 167:461–467CrossRefGoogle Scholar
  11. Laughlin SB, de Ruyter van Steveninck RR, Anderson JC (1998) The metabolic cost of neural information. Nat Neurosci 1:36–41 CrossRefPubMedGoogle Scholar
  12. McCormack JG, Denton RM (1994) Signal transduction by intramitochondrial Ca2+ in mammalian energy metabolism. News Physiol Sci 9:71–76Google Scholar
  13. Mojet MH (1992) Phototransduction and light-induced mitochondrial activation in blowfly compound eyes. PhD Thesis, GroningenGoogle Scholar
  14. Mojet MH (1993) Dual role for extracellular calcium in blowfly phototransduction. J Comp Physiol A 173:335–346CrossRefGoogle Scholar
  15. Mojet MH, Tinbergen J, Stavenga DG (1991) Receptor potential and light induced mitochondrial activation in blowfly photoreceptor mutants. J Comp Physiol A 168:305–312CrossRefGoogle Scholar
  16. Oberwinkler J, Stavenga DG (2000a) Calcium transients in the rhabdomeres of dark- and light-adapted fly photoreceptor cells. J Neurosci 20:1701–1709PubMedGoogle Scholar
  17. Oberwinkler J, Stavenga DG (2000b) Calcium imaging demonstrates colocalization of calcium influx and extrusion in fly photoreceptors. Proc Natl Acad Sci USA 97:8578–8583CrossRefPubMedGoogle Scholar
  18. Oman S, Grubič Z, Brzin M (1977) Automation of a magnetic diver balance for reduced weight and microgasometric measurements. Anal Biochem 83:211–215PubMedGoogle Scholar
  19. Postma M, Oberwinkler J, Stavenga DG (1999) Does Ca2+ reach millimolar concentrations after single photon absorption in Drosophila photoreceptor microvilli? Biophys J 77:1811–1823PubMedGoogle Scholar
  20. Reuss H, Mojet MH, Chyb S, Hardie RC (1997) In vivo analysis of the Drosophila light-sensitive channels, TRP and TRPL. Neuron 19:1249–1259CrossRefPubMedGoogle Scholar
  21. Robb-Gaspers LD, Rutter GA, Burnett P, Hajnoczky G, Denton RM, Thomas AP (1998) Coupling between cytosolic and mitochondrial calcium oscillation: role in the regulation of hepatic metabolism. Biochim Biophys Acta 1366:17–32CrossRefPubMedGoogle Scholar
  22. Stavenga DG (1995) Insect retinal pigments: spectral characteristics and physiological functions. Prog Retin Eye Res 15:231–259CrossRefGoogle Scholar
  23. Stavenga DG, Tinbergen J (1983) Light dependence of oxidative metabolism in fly compound eyes studied in vivo by microspectrofluorometry. Naturwissenschaften 70:618–620Google Scholar
  24. Stušek P, Grosman M (1983) Simultaneous photometry and oxygen consumption measurements in insect eyes. Iugoslav Physiol Pharmacol Acta 19:413–426Google Scholar
  25. Tinbergen J, Stavenga DG (1987) Spectral sensitivity of light induced respiratory activity of photoreceptor mitochondria in the intact fly. J Comp Physiol A 160:195–203Google Scholar
  26. Tsacopoulos M, Poitry S, Borsellino A (1981) Diffusion and consumption of oxygen in the superfused retina of the drone (Apis mellifera) in darkness. J Gen Physiol 77:601–628CrossRefPubMedGoogle Scholar
  27. Tsacopulos M, Orkand RK, Coles JA, Levy S, Poitry S (1983) Oxygen uptake occurs faster than sodium pumping in bee retina after light flash. Nature 301:604–606PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Tina Pangršič
    • 1
  • Peter Stušek
    • 1
  • Gregor Belušič
    • 1
  • Gregor Zupančič
    • 1
    Email author
  1. 1.Biotechnical Faculty, Department of BiologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations