Advertisement

Journal of Comparative Physiology A

, Volume 190, Issue 3, pp 173–183 | Cite as

Mechanisms of stick insect locomotion in a gap-crossing paradigm

  • B. BläsingEmail author
  • H. Cruse
Original Paper

Abstract

Locomotion of stick insects climbing over gaps of more than twice their step length has proved to be a useful paradigm to investigate how locomotor behaviour is adapted to external conditions. In this study, swing amplitudes and extreme positions of single steps from gap-crossing sequences have been analysed and compared to corresponding parameters of undisturbed walking. We show that adaptations of the basic mechanisms concern movements of single legs as well as the coordination between the legs. Slowing down of stance velocity, searching movements of legs in protraction and the generation of short steps are crucial prerequisites in the gap-crossing task. The rules of leg coordination described for stick insect walking seem to be modified, and load on the supporting legs is assumed to have a major effect on coordination especially in slow walking. Stepping into the gap with a front leg and antennal contact with the far edge of the gap provide information, as both events influence the following leg movements, whereas antennal “non-contact” seems not to contain information. Integration of these results into the model of the walking controller can improve our understanding of insect locomotion in highly irregular environments.

Keywords

Gap-crossing Leg coordination Step parameters Stick insect locomotion Tactile orientation 

Abbreviations

AEP

anterior extreme position

fAEP

fictive anterior extreme position

PEP

posterior extreme position

TOT

treading-on-tarsus

Notes

Acknowledgements

This work was supported by grant no Cr 58/9-3 of the DFG and the graduate programme “Verhaltensstrategien und Verhaltensoptimierung” (DFG).

References

  1. Bässler U (1977) Sense organs in the femur of the stick insect and their relevance to the control of position of the femur-tibia-joint. J Comp Physiol A 121:99–113Google Scholar
  2. Bässler U (1983) Neural basis of elementary behaviour in stick insects. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. Bässler U, Büschges A (1998) Pattern generation for stick insect walking movements—multisensory control of a locomotor program. Brain Res Rev 27:65–88Google Scholar
  4. Bläsing B, Cruse H (2004) Stick insect locomotion in a complex environment: climbing over large gaps. J Exp Biol (in press)Google Scholar
  5. Brooks R (1991) Intelligence without reason. Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI-91)Google Scholar
  6. Cruse H (1976a) The function of the legs in the free walking stick insect, Carausius morosus. J Comp Physiol A 112:235–262Google Scholar
  7. Cruse H (1976b) The control of the body position in the stick insect (Carausius morosus) when walking over uneven surfaces. Biol Cybern 24:25–33Google Scholar
  8. Cruse H (1979) The control of the anterior extreme position of the hind leg of a walking insect. Carausius morosus. Physiol Entomol 4:121–124Google Scholar
  9. Cruse H (1985a) Coactivating influences between neighbouring legs in walking insects. J Exp Biol 114:513–519Google Scholar
  10. Cruse H (1985b) Which parameters control the leg movement of a walking insect? II. The start of the swing phase. J Exp Biol 116:357–362Google Scholar
  11. Cruse H (1990) What mechanisms coordinate leg movement in walking arthropods? TINS 13:15–21PubMedGoogle Scholar
  12. Cruse H, Epstein S (1982) Peripheral influences on the movement of the legs in a walking insect Carausius morosus. J Exp Biol 101:161–170Google Scholar
  13. Cruse H, Frantsevich L (1997) The stick insect Obrimus asperrimus (Phasmida: Bacillidae) walking on different surfaces. J Insect Physiol 43:447–455CrossRefGoogle Scholar
  14. Cruse H, Saxler G (1980) Oscillations of force in the standing legs of a walking insect (Carausius morosus). Biol Cybern 36:159–163Google Scholar
  15. Cruse H, Schwarze W (1988) Mechanisms of coupling between the ipsilateral legs of a walking insect (Carausius morosus). J Exp Biol 138:455–469Google Scholar
  16. Cruse H, Kindermann T, Schumm M, Dean J, Schmitz J (1998) Walknet—a biologically inspired network to control six-legged walking. Neural Networks 11:1435–1447CrossRefGoogle Scholar
  17. Dean J, Wendler G (1982) Stick insect walking on a wheel: perturbations induced by obstruction of leg protraction. J Comp Physiol 148:195–207Google Scholar
  18. Dean J, Wendler G (1983) Stick insect locomotion on a wheel: interleg coordination of leg position. J Exp Biol 103:203–216Google Scholar
  19. Dean J, Wendler G (1984) Stick insect locomotion on a wheel: patterns of stopping and starting. J Exp Biol 110:203–216Google Scholar
  20. Delcomyn F (1985) Factors regulating insect walking. Annu Rev Entomol 30:239–256CrossRefGoogle Scholar
  21. Dürr V (2001) Stereotypic leg searching-movements in the stick insect: kinematic analysis, behavioural context and simulation. J Exp Biol 204:1589–1604PubMedGoogle Scholar
  22. Dürr V, Bläsing B (2000) Antennal movements of two stick insect species: spatio-temporal coordination with leg movements. Zoology 103 [Suppl III (DZG 93.1)]:17Google Scholar
  23. Frantsevich I, Frantsevich L (1996) Space constancy in form perception by the stick insect. Naturwissenschaften 83:323–324CrossRefGoogle Scholar
  24. Graham D (1972) A behavioural analysis of the temporal organisation of walking movements in the 1st instar and adult stick insect (Carausius morosus). J Comp Physiol 81:23–52Google Scholar
  25. Graham D (1979) Effects of circum-oesophageal lesion on the behaviour of the stick insect Carausius morosus. 2. Changes in walking co-ordination. Biol Cybern 32:147–152Google Scholar
  26. Graham D (1985) Pattern and control of walking in insects. Adv Insect Physiol 18:31–140Google Scholar
  27. Graham D, Epstein S (1985) Behaviour and motor output for an insect walking on a slippery surface. J Exp Biol 118:287–296Google Scholar
  28. Kindermann T (2002) Behavior and adaptability of a six-legged walking system with highly distributed control. Adapt Behav 9:16–41Google Scholar
  29. Pearson KG (1972) Central programming and reflex control of walking in the cockroach. J Exp Biol 56:173–193Google Scholar
  30. Pearson KG, Franklin R (1984) Characteristics of leg movement and patterns of coordination in locusts walking on rough terrain. Int J Robot Res 3:101–112Google Scholar
  31. Rixe A (1995) Geometrische und temporale Muster der Bein- und Körperbewegungen beim Kurvenlauf der Stabheuschrecke Carausius morosus. Diplomarbeit, Fakultät für Biologie, Universität BielefeldGoogle Scholar
  32. Schmitz J, Hassfeld G (1989) The treading-on-tarsus reflex in stick insects: phase dependence and modifications of the motor output during walking. J Exp Biol 143:373–388Google Scholar
  33. Wagner H (1996) Verbesserungen der Beinkoordination in einem Laufmodell der Stabheuschrecke mit Hilfe genetischer Algorithmen. Diplomarbeit. Technische Fakultät, Universität BielefeldGoogle Scholar
  34. Watson JT, Ritzmann RE, Zill SN, Pollack AJ (2002) Control of obstacle climbing in the cockroach Blaberus discoidalis. I. Kinematics. J Comp Physiol A 188:39–53CrossRefGoogle Scholar
  35. Wendler G (1964) Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Z Vergl Physiol 48:198–250Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Faculty of BiologyUniversity of Bielefeld BielefeldGermany

Personalised recommendations