Journal of Comparative Physiology A

, Volume 189, Issue 10, pp 769–775

Do social parasitic bumblebees use chemical weapons? (Hymenoptera, Apidae)

  • B. O. Zimma
  • M. Ayasse
  • J. Tengö
  • F. Ibarra
  • C. Schulz
  • W. Francke
Original Paper


The bumblebee Bombus (Psithyrus) norvegicus Sp.-Schn. is an obligate social parasite of B. (Pyrobombus) hypnorum L. Behavioural observations indicated that nest-invading B. norvegicus females may use allomones to defend themselves against attacking host workers. However, so far no defensive chemicals used by social parasitic bumblebee females have been identified. We analysed volatile constituents of the cuticular lipid profile of B. norvegicus females. Furthermore, we performed electrophysiological studies and behavioural experiments in order to identify possible chemical weapons. Coupled gas chromatography-electroantennography showed 15 compounds to trigger responses in antennae of the host workers. Using gas chromatography–mass spectrometry, the main compound among the cuticular volatiles of B. norvegicus females was found to be dodecyl acetate. A corresponding mixture of synthetic volatiles as well as pure dodecyl acetate showed a strong repellent effect on starved host workers. B. norvegicus females use dodecyl acetate to repel attacking B. hypnorum workers during nest usurpation and subsequently during colony development. Dodecyl acetate is the first repellent allomone identified in bumblebees.


Bombus norvegicus Chemical weapon Dodecyl acetate Repellent allomone Social parasitic bumblebees 


  1. Altenkirch G (1962) Untersuchungen über die Morphologie der abdominalen Hautdrüsen einheimischer Apiden (Insecta, Hymenoptera. Zool Beitr 7:161–238Google Scholar
  2. Ayasse M, Paxton R (2002) Brood protection in social insects. In: Hilker M, Meiners T (eds) Chemoecology of insect eggs and egg deposition. Blackwell, Berlin, pp 117–148Google Scholar
  3. Ayasse M, Engels W, Hefetz A, Tengö J, Lübke G, Francke W (1993) Ontogenetic patterns of volatiles identified in Dufour's gland extracts from queens and workers of the primitively eusocial halictine bee, Lasioglossum malachurum (Hymenoptera: Halictidae). Insectes Soc 40:41–58Google Scholar
  4. Ayasse M, Marlovits T, Tengö J, Taghizadeh T, Francke W (1995) Are there pheromonal dominance signals in the bumblebee Bombus hypnorum L? (Hymenoptera, Apidae) Apidologie 26:163–180Google Scholar
  5. Ayasse M, Engels W, Lübke G, Taghizadeh T, Francke W (1999) Mating expenditures reduced via female sex pheromone modulation in the primitively eusocial halictine bee, Lasioglossum (Evylaeus) malachurum (Hymenoptera, Halictidae). Behav Ecol Sociobiol 45:95–100CrossRefGoogle Scholar
  6. Ayasse M, Schiestl FP, Paulus H, Löfstedt C, Hansson B, Ibarra F, Francke W (2000) Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: How does flower-specific variation of odor signals influence reproductive success? Evolution 54:1995–2006PubMedGoogle Scholar
  7. Bergström G, Löfqvist J (1968) Odour similarities between the slave-keeping ants Formica sanguinea and Polyergus rufescens and their slaves Formica fusca and Formica rufibarbis. J Insect Physiol 14:995–1011Google Scholar
  8. Billen J, Morgan D (1998) Pheromone communication in social insects: sources and secretions. In: Meer RK van der et al. (eds) Pheromone communication in social insects. Ants, wasps, bees, and termites. Westview Press, Boulder, Colorado, pp 3–33Google Scholar
  9. Blum MS, Crewe RM, Kerr WE, Keith LH, Garrison AW, Walker MM (1970) Citral in stingless bees: isolation and functions in trail-laying and robbing. J Insect Physiol 16:1637–1648PubMedGoogle Scholar
  10. Buser HR, Arn H, Guerin P, Rauscher S (1983) Determination of double bond position in mono-unsaturated acetates by mass-spectrometry of dimethyl disulfide adducts. Anal Chem 55:818–822Google Scholar
  11. Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129–154Google Scholar
  12. D'Ettorre P, Errard C, Ibarra F, Francke W, Hefetz A (2000) Sneak in or repel your enemy: Dufour's gland repellent as a strategy for successful usurpation in the slave-maker Polyergus rufescens. Chemoecology 10:135–142Google Scholar
  13. Duffield RM, Wheeler JW, Eickwort GC (1984) Sociochemicals of bees. In: Bell WJ, Carde RT (eds) Chemical ecology of insects. Chapman and Hall, London, pp 387–428Google Scholar
  14. Dunkelblum E, Tan SH, Silk PJ (1985) Double-bond location in mono-unsaturated fatty acids by dimethyl disulfide. Derivatization and mass spectrometry: application to analysis of fatty acids in pheromone glands of four Lepidoptera. J Chem Ecol 11:265–277Google Scholar
  15. Fisher RM (1983a) Inability of the social parasite Psithyrus ashtoni to suppress ovarian development in workers of Bombus affinis (Hymenoptera: Apidae). J Kansas Entomol Soc 56:69–73Google Scholar
  16. Fisher RM (1983b) Behavioural interactions between a social parasite, Psithyrus citrinus (Hymenoptera: Apidae) and its bumble bee hosts. Proc Entomol Soc Ontario 114:55–60Google Scholar
  17. Fisher RM (1984a) Evolution and host specificity: a study of the invasion success of a specialized bumble bee social parasite. Can J Zool 62:1641–1644Google Scholar
  18. Fisher RM (1984b) Dominance by a bumble bee social parasite (Psithyrus citrinus) over workers of its host (Bombus impatiens). Anim Behav 32:301–302Google Scholar
  19. Fisher RM (1988) Observation on the behaviors of three European cuckoo bumble bee species (Psithyrus). Insectes Soc 35:341–354Google Scholar
  20. Fisher RM, Sampson BJ (1992) Morphological specializations of the bumble bee social parasite Psithyrus ashtoni (Cresson) (Hymenoptera: Apidae). Can Entomol 124:69–77Google Scholar
  21. Hefetz A, Taghizadeh T, Francke W (1996) The exocrinology of the queen bumble bee Bombus terrestris (Hymenoptera: Apidae, Bombini). Z Naturforsch 51c:409–422Google Scholar
  22. Hefetz A (1998) Exocrine glands and their products in non-Apis bees: chemical, functional and evolutionary perspectives. In: Meer RK van der et al. (eds) Pheromone communication in social insects. Ants, wasps, bees, and termites. Westview Press, Boulder, Colorado, pp 236–256Google Scholar
  23. Hölldobler B, Michener CD (1980) Mechanisms of identification and discrimination in social hymenoptera. In: Markl H (ed) Evolution of social behaviour: hypotheses and empirical tests. Chemie, Weinheim, pp 35–58Google Scholar
  24. Honk CGJ van, Velthuis HHW, Röseler PF, Malotaux M (1980) The mandibular glands of Bombus terrestris queens as a source of queen pheromones. Entomol Exp Appl 28:191–198Google Scholar
  25. Honk CGJ van, Röseler PF, Veltuis HHW, Malotaux M (1981) The conquest of a Bombus terrestris colony by a Psithyrus vestalis female. Apidologie 12:57–67Google Scholar
  26. Jarau S (2003) Recruitment behaviour and chemical communication in stingless bees (Hymenoptera, Apidae, Meliponini). PhD thesis, University of ViennaGoogle Scholar
  27. Knudsen JT, Tollsten L, Bergström LG (1993) Floral scents—a check list of volatile compounds isolated by head-space techniques. Phytochemistry 433:252–280Google Scholar
  28. Küpper G (1996) Psithyrus sylvestris (Lep.) in Völkern von Bombus pratorum (L.) (Hymenoptera: Apidae). PhD thesis, Ruhr-University BochumGoogle Scholar
  29. Küpper G, Schwammberger KH (1995) Social parasitism in bumble bees (Hymenoptera, Apidae): observations of Psithyrus sylvestris in Bombus pratorum nests. Apidologie 26:245–254Google Scholar
  30. Lenoir A, D'Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599PubMedGoogle Scholar
  31. Løken A (1984) Scandinavian species of the genus Psithyrus Lepeletier (Hymenoptera: Apidae). Entomol Scand [Suppl] 23:1-45Google Scholar
  32. McLafferty FW, Stauffer DB (1989) The Wiley NBS registry of mass spectral data. Wiley Interscience, New YorkGoogle Scholar
  33. Michener DC (2000) The bees of the world. The John Hopkins University Press, BaltimoreGoogle Scholar
  34. Mori A, Grasso DA, Visicchio R, Le Moli F (2000) Colony founding in Polyergus rufescens: the role of the Dufour's gland. Insectes Soc 47:7-10CrossRefGoogle Scholar
  35. Norusis MJ (1993a) SPSS for Windows: base system user's guide, release 6.0. SPSS, Chicago, USAGoogle Scholar
  36. Norusis MJ (1993b) SPSS for Windows: professional statistics, release 6.0. SPSS, Chicago, USAGoogle Scholar
  37. Pankiw T, Winston ML, Slessor KN (1995) Queen attendance behavior of worker honey bees (Apis mellifera L.) that are high and low responding to queen mandibular pheromone. Insectes Soc 42:371–378Google Scholar
  38. Regnier FE, Wilson EO (1971) Chemical communication and "propaganda" in slave-maker ants. Science 172:267–269Google Scholar
  39. Röseler PF, Röseler I, Honk CGJ van (1981) Evidence for inhibition of corpora allata activity in workers of Bombus terrestris by a pheromone from the queen's mandibular glands. Experientia 37:348–351Google Scholar
  40. Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, PrincetonGoogle Scholar
  41. Singer T (1998) Roles of hydrocarbons in the recognition systems of insects. Am Zool 38:394–405Google Scholar
  42. Taghizadeh T (1996) Untersuchung flüchtiger Inhaltsstoffe von Hymenopteren. PhD thesis, University of HamburgGoogle Scholar
  43. Topoff H, Cover S, Greenberg L, Goodloe L, Sherman P (1988) Colony founding by queens of the obligatory slave-making ant, Polyergus breviceps: the role of the Dufour's gland. Ethology 78:209–218Google Scholar
  44. Wilson EO (1971) The insect societies. Belknap Press, HarvardGoogle Scholar
  45. Wittmann D, Radtke R, Zeil J, Lübke J, Francke W (1990) Robber bees (Lestrimelitta limao) and their host. Chemical and visual cues in nest defense by Trigona (Tetragonisca) angustula (Apidae: Meliponinae). J Chem Ecol 16:631–641Google Scholar
  46. Zimma BO (2002) Identification of a repellent allomone in the social parasitic bumblebee Psithyrus norvegicus (Hymenoptera, Apidae). Diploma thesis, University of ViennaGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • B. O. Zimma
    • 1
  • M. Ayasse
    • 1
  • J. Tengö
    • 2
  • F. Ibarra
    • 3
  • C. Schulz
    • 3
  • W. Francke
    • 3
  1. 1.Department of Experimental EcologyUniversity of UlmUlmGermany
  2. 2.Ecological Research Station of Uppsala UniversityÖlands Skogsby 6280Sweden
  3. 3.Institute of Organic ChemistryUniversity of HamburgHamburgGermany

Personalised recommendations