Journal of Comparative Physiology A

, Volume 189, Issue 8, pp 599–607 | Cite as

The dynamics of sleep-like behaviour in honey bees

  • S. Sauer
  • M. Kinkelin
  • E. Herrmann
  • W. Kaiser
Original Paper


At night, honey bees pass through a physiological state that is similar to mammalian sleep. Like sleep in mammals, sleep-like behaviour in honey bees is an active process. This is expressed most clearly in these insects by spontaneous antennal movements which appear at irregular intervals throughout the night and interrupt episodes of antennal immobility. Here we present a newly developed video technique for the continuous recording of the position and movements of the bee's antennae. The same technique was used to record head inclination and ventilatory movements. Despite the constancy of the ambient temperature, the magnitudes of antennae-related parameters, as well as head inclination and ventilatory cycle duration, displayed dynamic unimodal time-courses which exhibited a high degree of temporal covariance. The similarity between these time-courses and the nightly time-course of the reaction threshold for a sensory stimulus, investigated previously, indicates that, in honey bees, deepest "sleep" and least ventilatory activity occur at the same time (in the 7th hour of the rest phase).


Arthropods Dynamic process Honey bee Sleep-like behaviour Ventilation 



continuous darkness




periodic alternation between light (L) and darkness (D)


Middle European Summer Time (UTC+2 h);





Our special thanks go to Prof. Dr.-Ing. Dr. hc. Willmut Zschunke and Heinz Helmuth Grimm (Department of Electrical Engineering and Information Technology, Darmstadt University of Technology) for the development and construction of the video interface. Theo Zaschka (München) produced the excellent, custom-built mechanical parts of the experimental apparatus. We thank Gabriele Bayer for her technical assistance and Jana Steiner-Kaiser for the translation of the manuscript and numerous helpful and critical discussions. We are grateful to the Deutsche Forschungsgemeinschaft for funding the experimental setup under the programme SFB 45 "Comparative Neurobiology of Behaviour".


  1. Andersen FO (1968) Sleep in moths and its dependence on the frequency of stimulation in Anagasta kuehniella. Opusc Entomol 33:15–24Google Scholar
  2. Crailsheim K, Eggenreich U, Ressi R, Szolderits MJ (1999) Temperature preference of honeybee drones (Hymenoptera: Apidae). Entomol Gener 24:37–47Google Scholar
  3. Erber J, Pribbenow B, Kisch J, Faensen D (2000) Operant conditioning of antennal muscle activity in the honey bee (Apis mellifera L.). J Comp Physiol A 186:557–565PubMedGoogle Scholar
  4. Grziwa J (1961) Arbeiten die Bienen auch nachts? Imkerfreund 16:161–163Google Scholar
  5. Harris JW, Woodring J (1992) Effects of stress, age, season, and source colony on levels of octopamine, dopamine and serotonin in the honey bee (Apis mellifera L.) brain. J Insect Physiol 38:29–35Google Scholar
  6. Haufe WO (1963) Ethological and statistical aspects of a quantal response in mosquitoes to environmental stimuli. Behaviour 20:221–241Google Scholar
  7. Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, Pack AI (2000) Rest in Drosophila is a sleep-like state. Neuron 25:129–138PubMedGoogle Scholar
  8. Hess WR (1926) Die Temperaturregulierung im Bienenvolk. Z Vergl Physiol 4:465–487Google Scholar
  9. Hobson JA (1989) Sleep. Scientific American Library, a Division of HPHLP, New York, USAGoogle Scholar
  10. Hoffmann RW (1937) Der Insektenschlaf als reflektorische Immobilisation. Naturwissenschaften 25:359–366Google Scholar
  11. Kaiser W (1983) Effects of non-visual and circadian inputs to visual interneurones in the honey bee. In: Horn E (ed) Fortschritte der Zoologie 28: multimodal convergences in sensory systems. Fischer, Stuttgart, pp 149–166Google Scholar
  12. Kaiser W (1988) Busy bees need rest, too. Behavioural and electromyographical sleep signs in honeybees. J Comp Physiol A 163:565–584Google Scholar
  13. Kaiser W (1995) Rest at night in some solitary bees—a comparison with the sleep-like state of honey bees. Apidologie 26:213–230Google Scholar
  14. Kaiser W (2000) Sleep in insects. World Fed Sleep Res Soc Newsletter Online 8, issue 1. Scholar
  15. Kaiser W (2002) Honey bee sleep is different from chill coma—behavioural and electrophysiological recordings in forager honey bees. J Sleep Res 11 [Suppl 1]:115Google Scholar
  16. Kaiser W, Jander JP (1988) Electromyographic indicators of sleep and wakefulness of honey bees. In: Koella WP, Obál F, Schulz H, Visser P (eds) Sleep 86 (Proc 8th Eur Cong Sleep Res). Fischer, Stuttgart, pp 249–251Google Scholar
  17. Kaiser W, Steiner-Kaiser J (1983) Neuronal correlates of sleep, wakefulness and arousal in a diurnal insect. Nature 301:707–709PubMedGoogle Scholar
  18. Kaiser W, Weber T, Otto D (1996) Vegetative physiology at night in honey bees. In: Elsner N, Schnitzler HU (eds) Brain and evolution. Proc 24th Göttingen Neurobiol Conf, vol II. Thieme, Stuttgart, pp 140Google Scholar
  19. Lindauer M (1952) Ein Beitrag zur Frage der Arbeitsteilung im Bienenstaat. Z Vergl Physiol 34:299–345Google Scholar
  20. Livingstone MS, Hubel DH (1981) Effects of sleep and arousal on the processing of visual information in the cat. Nature 291:554–561PubMedGoogle Scholar
  21. Martin H, Lindauer M (1966) Sinnesphysiologische Leistungen beim Wabenbau der Honigbiene. Z Vergl Physiol 53:372–404Google Scholar
  22. Mill PJ (1985) Integument, respiration and circulation. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology biochemistry and pharmacology, vol 3. Pergamon Press, Oxford, pp 546–564Google Scholar
  23. Rattenborg NC, Amlaner CJ (2002) Phylogeny of sleep. In: Lee-Chiong TL, Sateia MJ, Carskadon MA (eds) Sleep medicine. Hanley & Belfus, Philadelphia, pp 7–22Google Scholar
  24. Sauer S, Kaiser W (1995) Pollen foragers of the honey bee (Apis mellifera carnica L) rest in the hive at night. In: Elsner N, Menzel R (eds) Learning and memory. Proc 23rd Göttingen Neurobiol Conf. Thieme, Stuttgart, pp 253Google Scholar
  25. Sauer S, Kaiser W (1996a) Sleep-like behaviour of honey bees follows a circadian rhythm. Verh Dtsch Zool Ges 89:292Google Scholar
  26. Sauer S, Kaiser W (1996b) The nocturnal behaviour of pollen forager honey bees (Apis mellifera carnica L) in an observation hive. Apidologie 27:317–318Google Scholar
  27. Sauer S, Kaiser W, Sauer M (1997a) The microstructure of sleep in honey bees—a statistical analysis of antennal immobility. Verh Dtsch Zool Ges 90:316Google Scholar
  28. Sauer S, Kinkelin M, Kaiser W (1997b) Sleep in honey bees is a dynamic process. Apidologie 28:213–215Google Scholar
  29. Sauer S, Herrmann E, Kaiser W (1998a) The temporal occurrence of antennal motility during sleep in honey bees can be described by a non-stationary Poisson process. In: Elsner N, Wehner R (eds) New neuroethology on the move. Proc 26th Göttingen Neurobiol Conf, vol II. Thieme, Stuttgart, pp 266Google Scholar
  30. Sauer S, Herrmann E, Kaiser W (1998b) Covariation of behavioural sleep signs and resting respiration in honey bees. J Sleep Res 7 [Suppl 2]:240Google Scholar
  31. Sauer S, Kinkelin M, Kaiser W (1998c) Measurement of behavioral sleep signs in honeybees with a custom designed video interface. In: Noldus LPJJ (ed) Measuring behavior 98. Proceedings of the 2nd International Conference on Methods and Techniques in Behavioural Research. Noldus Information Technology, Wageningen Netherlands, pp 249–250 ( Scholar
  32. Schuppe H, Burrows M (1996a) Characterization of resting states in locusts. Verh Dtsch Zool Ges 89:296Google Scholar
  33. Schuppe H, Burrows M (1996b) Palp movements in resting locusts. In: Elsner N, Schnitzler HU (eds) Brain and evolution. Proc 24th Göttingen Neurobiol Conf, vol II. Thieme, Stuttgart New York, pp 119Google Scholar
  34. Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287:1834–1837CrossRefPubMedGoogle Scholar
  35. Szymczak JT (1987) Daily distribution of sleep states in the rook Corvus frugilegus. J Comp Physiol A 161:321–327PubMedGoogle Scholar
  36. Tobler I (1983) Effect of forced locomotion on the rest-activity cycle of the cockroach. Behav Brain Res 8:351–360CrossRefPubMedGoogle Scholar
  37. Tobler I (1984) Evolution of the sleep process: a phylogenetic approach. In: Borbély AA, Valatx JL (eds) Sleep mechanisms. Exp Brain Res [Suppl 8]. Springer, Berlin Heidelberg New York, pp 207–226Google Scholar
  38. Tobler I (2000) Phylogeny of sleep regulation. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 3rd edn. Saunders, Philadelphia, pp 72–81Google Scholar
  39. Tobler I, Neuner-Jehle M (1992) 24-h variation of vigilance in the cockroach Blaberus giganteus. J Sleep Res 1:231–239PubMedGoogle Scholar
  40. Tobler I, Stalder J (1988) Rest in the scorpion—a sleep-like state? J Comp Physiol A 163:227–235Google Scholar
  41. Zepelin H (2000) Mammalian sleep. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 3rd edn. Saunders, Philadelphia, pp 82–92Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • S. Sauer
    • 1
    • 2
  • M. Kinkelin
    • 1
  • E. Herrmann
    • 3
  • W. Kaiser
    • 1
  1. 1.Institut für Zoologie der Technischen Universität DarmstadtDarmstadtGermany
  2. 2.Düsseldorfer Straße 20MünchenGermany
  3. 3.Fachbereich Mathematik der Technischen Universität DarmstadtDarmstadtGermany

Personalised recommendations