Advertisement

Journal of Comparative Physiology A

, Volume 189, Issue 8, pp 579–588 | Cite as

Desert ant navigation: how miniature brains solve complex tasks

  • R. Wehner
Karl von Frisch Lecture

Abstract

This essay presents and discusses the state of the art in studies of desert ant (Cataglyphis) navigation. In dealing with behavioural performances, neural mechanisms, and ecological functions these studies ultimately aim at an evolutionary understanding of the insect's navigational toolkit: its skylight (polarization) compass, its path integrator, its view-dependent ways of recognizing places and following landmark routes, and its strategies of flexibly interlinking these modes of navigation to generate amazingly rich behavioural outputs. The general message is that Cataglyphis uses path integration as an egocentric guideline to acquire continually updated spatial information about places and routes. Hence, it relies on procedural knowledge, and largely context-dependent retrieval of such knowledge, rather than on all-embracing geocentred representations of space.

Keywords

Cataglyphis Landmark memories Path integration Polarization compass Vector navigation 

Notes

Acknowledgements

I am very grateful indeed to my graduate students Simone Bühlmann, David Andel, Katja Selchow and Martin Kohler for providing the data shown in Figs. 1B, 2, 7A and B, respectively, and to Dr. Ursula Menzi for her skillful cooperation in designing the figures. Financial support came from the Swiss National Science Foundation, the Human Frontier Science Program (HFSP), and the G. and A. Claraz Foundation. All experiments complied with current Swiss legislation concerning animal care.

References

  1. Åkesson S, Wehner R (1997) Visual snapshot memory of desert ants, Cataglyphis fortis. Proc Neurobiol Conf Göttingen 25:482Google Scholar
  2. Åkesson S, Wehner R (2002) Visual navigation in desert ants Cataglyphis fortis: are snapshots coupled to a celestial system of reference? J Exp Biol 205:1971–1978Google Scholar
  3. Allman JM (1999) Evolving brains. Scientific American Library, New YorkGoogle Scholar
  4. Baerends GP (1941) Fortpflanzungsverhalten und Orientierung der Grabwespe Ammophila campestris. Tijdschr Entomol 84:68–275Google Scholar
  5. Basil JA, Kamil AC, Balda RP, Fite KV (1996) Differences in hippocampal volume among food storing corvids. Brain Behav Evol 47:156–164PubMedGoogle Scholar
  6. Biegler R (2000) Possible use of path integration in animal navigation. Anim Learn Behav 28:257–277Google Scholar
  7. Biegler R, McGregor A, Krebs JR, Healy SD (2001) A larger hippocampus is associated with longer-lasting spatial memory. Proc Natl Acad Sci USA 98:6941–6944CrossRefPubMedGoogle Scholar
  8. Bisch S, Wehner R (1998) Visual navigation in ants: evidence for site-based vectors. Proc Neurobiol Conf Göttingen 26:417Google Scholar
  9. Bisch S, Wehner R (1999) Context-dependent retrieval of local vectors in desert ants. Proc Neurobiol Conf Göttingen 27:429Google Scholar
  10. Bisch-Knaden S, Wehner R (2001) Egocentric information helps desert ants to navigate around familiar obstacles. J Exp Biol 204:4177–4184PubMedGoogle Scholar
  11. Bisch-Knaden S, Wehner R (2003a) Local vectors in desert ants: context-dependent learning during outbound and inbound runs. J Comp Physiol A 189:181–187Google Scholar
  12. Bisch-Knaden S, Wehner R (2003b) Landmark memories are more robust when acquired at the nest site than en route. Experiments in desert ants. Naturwissenschaften 90:127–130PubMedGoogle Scholar
  13. Brines ML (1978) Skylight polarization patterns as cues for honeybee orientation: physical measurements and behavioural experiments. PhD thesis, Rockefeller University, New YorkGoogle Scholar
  14. Brodbeck DR (1994) Memory for spatial and local cues: a comparison of a storing and a nonstoring species. Anim Learn Behav 22:119–133Google Scholar
  15. Colborn M, Ahmad-Annuar A, Fauria K, Collett TS (1999) Contextual modulation of visuomotor associations in bumble-bees (Bombus terrestris). Proc R Soc Lond Ser B 266:2413–2418CrossRefGoogle Scholar
  16. Collett M, Collett TS, Bisch S, Wehner R (1998) Local and global vectors in desert ant navigation. Nature 394:269–272CrossRefGoogle Scholar
  17. Collett M, Collett TS, Wehner R (1999) Calibration of vector navigation in desert ants. Curr Biol 9:1031–1034CrossRefPubMedGoogle Scholar
  18. Collett TS, Baron J (1995) Learnt sensory-motor mappings in honeybees: interpolation and its possible relevance to navigation. J Comp Physiol A 177:287–298Google Scholar
  19. Collett TS, Fry SN, Wehner R (1993) Sequence learning by honeybees. J Comp Physiol A 172:693–706Google Scholar
  20. Collett TS, Collett M, Wehner R (2001) The guidance of desert ants by extended landmarks. J Exp Biol 204:1635–1639PubMedGoogle Scholar
  21. Cornetz V (1910) Trajets de Fourmis et Retours au Nid. Paris: Institut Général PsychologiqueGoogle Scholar
  22. Dyer FC, Gill M, Sharbowski J (2002) Motivation and vector navigation in honey bees. Naturwissenschaften 89:262–264CrossRefGoogle Scholar
  23. Fauria K, Dale K, Colborn M, Collett TS (2002) Learning speed and contextual isolation in bumblebees. J Exp Biol 205:1009–1018PubMedGoogle Scholar
  24. Fent K (1985) Himmelsorientierung bei der Wüstenameise Cataglyphis bicolor: Bedeutung von Komplexaugen und Ocellen. PhD thesis, University of ZürichGoogle Scholar
  25. Frisch K von (1949) Die Polarisation des Himmelslichts als orientierender Faktor bei den Tänzen der Bienen. Experientia 5:142–148Google Scholar
  26. Frisch K von (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. Gallistel CR (2000) The replacement of general-purpose learning models with adaptively specialized learning modules. In: Gazzaniga MS (ed) The new cognitive neurosciences. MIT Press, Cambridge, MA, pp 1179–1191Google Scholar
  28. Gaulin SJC, FitzGerald RW (1989) Sexual selection for spatial learning ability. Anim Behav 37:322–331Google Scholar
  29. Gould JL, Dyer FC, Towne WF (1985) Recent progress in the study of the dance language. Fortschr Zool 31:141–161Google Scholar
  30. Grassé PP (1959) La reconstruction du nid et les coordinations interindividuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: essai d'interprétation du comportement des termites constructeurs. Insectes Soc 6:41–83Google Scholar
  31. Greggers U, Mauelshagen J (1997) Matching behavior of honeybees in a multiple-choice situation: the differential effect of environmental stimuli on the choice process. Anim Learn Behav 25:458–472Google Scholar
  32. Hartmann G, Wehner R (1995) The ant's path integration system: a neural architecture. Biol Cybern 73:483–497CrossRefGoogle Scholar
  33. Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, OxfordGoogle Scholar
  34. Healy SD, Krebs JR (1996) Food storing and the hippocampus in Paridae. Brain Behav Evol 47:195–199PubMedGoogle Scholar
  35. Hemmi JM, Zeil J (2003) Robust judgement of inter-object distance by an arthropod. Nature 421:160–163CrossRefPubMedGoogle Scholar
  36. Homberg U, Würden S (1997) Movement-sensitive, polarization-sensitive and light-sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria. J Comp Neurol 386:329–346CrossRefPubMedGoogle Scholar
  37. Jacobs LF, Gaulin SJC, Sherry DF, Hoffman GE (1990) Evolution of spatial cognition: sex-specific patterns of spatial behavior predict hippocampal size. Proc Natl Acad Sci USA 87:6349–6352PubMedGoogle Scholar
  38. Judd SPD, Collett TS (1998) Multiple stored views and landmark guidance in ants. Nature 392:710–714CrossRefGoogle Scholar
  39. Kirschfeld K (1972) Die notwendige Anzahl von Rezeptoren zur Bestimmung der Richtung des elektrischen Vektors linear polarisierten Lichtes. Z Naturforsch 27C:578–579Google Scholar
  40. Labhart T (1988) Polarization-opponent interneurons in the insect visual system. Nature 331:435–437CrossRefGoogle Scholar
  41. Labhart T (1999) How polarization-sensitive interneurones of crickets see the polarization pattern of the sky: a field study with an opto-electronic model neurone. J Exp Biol 202:757–770PubMedGoogle Scholar
  42. Labhart T (2000) Polarization-sensitive interneurons in the optic lobe of the desert ant Cataglyphis bicolor. Naturwissenschaften 87:133–136CrossRefPubMedGoogle Scholar
  43. Labhart T, Lambrinos D (2001) How does the insect nervous system code celestial e-vector information? A neural model for "compass neurons". Proc Int Conf Invert Vis, p 66Google Scholar
  44. Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379CrossRefPubMedGoogle Scholar
  45. Labhart T, Petzold J, Helbling H (2001) Spatial integration in polarization-sensitive interneurons of crickets: a survey of evidence, mechanisms and benefits. J Exp Biol 204:2423–2430PubMedGoogle Scholar
  46. Lambrinos D, Möller R, Labhart T, Pfeifer R, Wehner R (2000) A mobile robot employing insect strategies for navigation. Robot Autonom Syst 30:39–64CrossRefGoogle Scholar
  47. Loesel R, Homberg U (2001) Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach Leucophaea madurae. J Comp Neurol 439:193–207CrossRefPubMedGoogle Scholar
  48. Martin RD (1981) Relative brain size and metabolic rate in terrestrial vertebrates. Nature 293:57–60PubMedGoogle Scholar
  49. McGregor A, Healy SD (1999) Spatial accuracy in food-storing and nonstoring birds. Anim Behav 58:727–734CrossRefPubMedGoogle Scholar
  50. Menzel R, Giurfa M (2001) Cognitive architecture of a mini-brain: the honeybee. Trends Cogn Sci 5:62–71PubMedGoogle Scholar
  51. Menzel R, Geiger U, Müller J, Joerges J, Chittka L (1998) Bees travel novel homeward routes by integrating separately acquired vector memories. Anim Behav 55:139–152Google Scholar
  52. Menzel R, Brandt R, Gumbert A, Komischke B (2000) Two spatial memories for honeybee navigation. Proc R Soc Lond Ser B 267:961–968CrossRefGoogle Scholar
  53. Menzel R, Giurfa M, Gerber B, Hellstern F (2001) Cognition in insects: the honeybee as a study case. In: Roth G, Wullimann M (eds) Brain, evolution and cognition. Wiley, New York, pp 333–366Google Scholar
  54. Müller M (1989) Mechanismus der Wegintegration bei Cataglyphis fortis (Hymenoptera, Insecta). PhD thesis, University of ZürichGoogle Scholar
  55. Müller M, Wehner R (1988) Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci USA 85:5287–5290Google Scholar
  56. Petzold J (2001) Polarisationsempfindliche Neuronen im Sehsystem der Feldgrille Gryllus campestris: Elektrophysiologie, Anatomie und Modellrechnungen. PhD thesis, University of ZürichGoogle Scholar
  57. Pfeiffer K, Homberg U (2002) Visual signal processing in neurons of the anterior optic tubercle of the locust, Schistocerca gregaria. Zoology 105 [Suppl 5]:45Google Scholar
  58. Pieron H (1904) Du rôle du sens musculaire dans l'orientation des fourmis. Bull Inst Gen Psychol Paris 4:168–186Google Scholar
  59. Pieron H (1912) Le problème de l'orientation envisagé chez les fourmis. Scientia 12:217–243Google Scholar
  60. Pomozi I, Horvath G, Wehner R (2001) How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation. J Exp Biol 204:2933–2942PubMedGoogle Scholar
  61. Reynaud G (1898) Les lois de l'orientation chez les animaux. Rev Mondes 148:380–402Google Scholar
  62. Riley JR, Smith AD (2002) Design considerations for an harmonic radar to investigate the flight of insects at low altitude. Comput Electron Agric 35:151–169CrossRefGoogle Scholar
  63. Robinson GE, Dyer FC (1993) Plasticity of spatial memory in honey-bees: reorientation following colony fission. Anim Behav 46:311–320CrossRefGoogle Scholar
  64. Rossel S, Wehner R (1984) How bees analyse the polarization patterns in the sky. Experiments and model. J Comp Physiol A 154:607–615Google Scholar
  65. Santschi F (1913) Comment s'orientent les fourmis. Rev Suisse Zool 21:347–426Google Scholar
  66. Sassi S, Wehner R (1997) Dead reckoning in desert ants, Cataglyphis fortis: can homeward-bound vectors be reactivated by familiar landmark configurations? Proc Neurobiol Conf Göttingen 25:484Google Scholar
  67. Sommer S, Wehner R (2003) How does the precision of the ant's odometer depend on the distances travelled? Proc Neurobiol Conf Göttingen 29:364–365Google Scholar
  68. Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New YorkGoogle Scholar
  69. Strauss R (2002) The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol 12:633–638CrossRefPubMedGoogle Scholar
  70. Vitzthum H, Müller M, Homberg U (2002) Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J Neurosci 22:1114–1125PubMedGoogle Scholar
  71. Wang RF, Spelke ES (2002) Human spatial representation: insights from animals. Trends Cogn Sci 6:376–382CrossRefPubMedGoogle Scholar
  72. Wehner R (1968) Optische Orientierungsmechanismen im Heimkehrverhalten von Cataglyphis bicolor (Formicidae, Hymenoptera). Rev Suisse Zool 75:1076–1085Google Scholar
  73. Wehner R (1982) Himmelsnavigation bei Insekten. Neurophysiologie und Verhalten. Neujahrsbl Naturforsch Ges Zürich 184:1-132Google Scholar
  74. Wehner R (1987) Spatial organization of foraging behavior in individually searching desert ants, Cataglyphis (Sahara Desert) and Ocymyrmex (Namib Desert). In: JM Pasteels, J-L Deneubourg (eds) From individual to collective behavior in social insects. Birkhäuser, Basel, pp 15–42Google Scholar
  75. Wehner R (1991) Visuelle Navigation: Kleinstgehirn-Strategien. Verh Dtsch Zool Ges 84:89–104Google Scholar
  76. Wehner R (1994) The polarization-vision project: championing organismic biology. In: Schildberger K, Elsner N (eds) Neural basis of behavioural adaptation. Fischer, Stuttgart, pp 103–143Google Scholar
  77. Wehner R, Flatt I (1972) The visual orientation of desert ants, Cataglyphis bicolor, by means of terrestrial cues. In: Wehner R (ed) Information processing in the visual systems of arthropods. Springer, Berlin Heidelberg New York, pp 295–302Google Scholar
  78. Wehner R, Rossel S (1985) The bee's celestial compass—a case study in behavioural neurobiology. Fortschr Zool 31:11–53Google Scholar
  79. Wehner R, Srinivasan MV (2003) Path integration in insects. In: Jeffery K (ed) Biological basis of navigation. Oxford University Press, Oxford (in press)Google Scholar
  80. Wehner R, Strasser S (1985) The POL area of the honey bee's eye: behavioural evidence. Physiol Entomol 10:337–349Google Scholar
  81. Wehner R, Wehner S (1990) Insect navigation: use of maps or Ariadne's thread? Ethol Ecol Evol 2:27–48Google Scholar
  82. Wehner R, Harkness RD, Schmid-Hempel P (1983) Foraging strategies in individually searching ants, Cataglyphis bicolor (Hymenoptera: Formicidae). Akad Wiss Lit Mainz, Abh Math Naturwiss Kl. Fischer, StuttgartGoogle Scholar
  83. Wehner R, Bleuler S, Nievergelt C, Shah D (1990) Bees navigate by using vectors and routes rather than maps. Naturwissenschaften 77:479–482Google Scholar
  84. Wehner R, Fukushi T, Wehner S (1992) Rotatory components of movement in high speed desert ants, Cataglyphis bombycina. Proc Neurobiol Conf Göttingen 20:303Google Scholar
  85. Wehner R, Michel B, Antonsen P (1996) Visual navigation in insects: coupling of egocentric and geocentric information. J Exp Biol 199:129–140PubMedGoogle Scholar
  86. Wehner R, Gallizzi K, Frei C, Vesely M (2002) Calibration processes in desert ant navigation: vector courses and systematic search. J Comp Physiol A 188:683–693Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of ZürichZürichSwitzerland

Personalised recommendations