Bayesian Local Influence of Generalized Failure Time Models with Latent Variables and Multivariate Censored Data

  • Ming Ouyang
  • Xinyuan SongEmail author


We develop a Bayesian local influence procedure for generalized failure time models with latent variables and multivariate censored data. We propose to use the penalized splines (P-splines) approach to formulate the unknown functions of the proposed models. We assess the effects of minor perturbations to individual observations, the prior distributions of parameters, and the sampling distribution on statistical inference through various perturbation schemes. The first-order local influence measure is used to quantify the degree of minor perturbations to different aspects of a statistical model with the use of Bayes factor as an objective function. Simulation studies show that the empirical performance of the Bayesian local influence procedure is satisfactory. An application to a study of renal disease for type 2 diabetes patients is presented.


Bayesian local influence Latent variables Multivariate censored data P-splines approximation Perturbation schemes 


Funding Information

This research was supported by GRF 14305014 and 14601115 from the Research Grant Council of the Hong Kong Special Administration Region, Direct Grants from the Chinese University of Hong Kong, the National Natural Science Foundation of China (Grant No. 11471277).


  1. Bentler, P.M., & Wu, E. (2002). EQS6: structural equations program manual Encino, CA: Multivariate Software.Google Scholar
  2. Berger, J.O. (1994). An overview of robust Bayesian analysis. Test, 3, 5–58.MathSciNetCrossRefGoogle Scholar
  3. Berger, J.O., Rios Insua, D., Ruggeri, F. (2000). Bayesian robustness. Robust Bayesian Analysis, 1-32. In Rios Insua, D., & Ruggeri, F. (Eds.) Lecture Notes in Statistics, 152. New York: Springer-Verlag.Google Scholar
  4. Bollen, K.A. (1989). Structural equations with latent variables. New York: Wiley.CrossRefGoogle Scholar
  5. Chen, M.H., & Schmeiser, B. (1993). Performance of the Gibbs, hit-and-run, and Metropolis samplers. Journal of Computational and Graphical Statistics, 2, 251–272.MathSciNetCrossRefGoogle Scholar
  6. Chen, J., Liu, P.F., Song, X.Y. (2013). Bayesian diagnostics of transformation structural equation models. Computational Statistics and Data Analysis, 68, 111–128.MathSciNetCrossRefGoogle Scholar
  7. Chen, M., Silva, J., Paisley, J., Wang, C., Dunson, D., Carin, L. (2010). Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: algorithm and performance bounds. IEEE Transactions on Signal Processing, 58, 6140–6155.MathSciNetCrossRefGoogle Scholar
  8. Cook, R.D. (1986). Assessment of local influence (with discussion). Journal of the Royal Statistical Society, Series B, 48, 133–169.MathSciNetzbMATHGoogle Scholar
  9. De Boor, C. (1978). A practical guide to splines. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  10. Dey, D.K., Ghosh, S.K., Lou, K.R. (1996). On local sensitivity measures in Bayesian analysis (with discussion). Bayesian Robustness, 21-40. In Berger, J.O., Betro, B., Moreno, E., Pericchi, L.R., Ruggeri, F., Salinetti, G., Wasserman, L. (Eds.) IMS Lecture Notes-Monograph Series, 29, Hayward, CA.Google Scholar
  11. Eilers, P.H., & Marx, B.D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11, 89–102.MathSciNetCrossRefGoogle Scholar
  12. Fahrmeir, L., & Raach, A. (2007). A Bayesian semiparametric latent variable model for mixed responses. Psychometrika, 72, 327–346.MathSciNetCrossRefGoogle Scholar
  13. Gustafson, P., & Wasserman, L. (1995). Local sensitivity diagnostics for Bayesian inference. Annals of Statistics, 23, 2153–2167.MathSciNetCrossRefGoogle Scholar
  14. Gustafson, P. (1996). Local sensitivity of inferences to prior marginals. Journal of the American Statistical Association, 91, 774–781.MathSciNetCrossRefGoogle Scholar
  15. Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their application. Biometrika, 57, 97–100.MathSciNetCrossRefGoogle Scholar
  16. Ibrahim, J.G., Zhu, H.T., Tang, N.S. (2011). Bayesian local influence for survival models. Lifetime Data Analysis, 17, 43–70.MathSciNetCrossRefGoogle Scholar
  17. Jöreskog, K.G., & Sörbom, D. (1996). LISREL 8: User’s Reference Guide. Scientific Software International.Google Scholar
  18. Kass, R.E., Tierney, L., Kadane, J.B. (1989). Approximate methods for assessing influence and sensitivity in Bayesian analysis. Biometrika, 76, 663–674.MathSciNetCrossRefGoogle Scholar
  19. Lang, S., & Brezger, A. (2004). Bayesian P-splines. Journal of Computational and Graphical Statistics, 13, 183–212.MathSciNetCrossRefGoogle Scholar
  20. Lesaffre, E., & Verbeke, G. (1998). Local influence in linear mixed models. Biometrics, 54, 570–582.CrossRefGoogle Scholar
  21. Lin, D.Y. (1994). Cox regression analysis of multivariate failure time data: the marginal approach. Statistics in Medicine, 13, 2233–2247.CrossRefGoogle Scholar
  22. Liu, J.S., Liang, F., Wong, W.H. (2000). The multiple-try method and local optimization in Metropolis sampling. Journal of the American Statistical Association, 95, 121–134.MathSciNetCrossRefGoogle Scholar
  23. Luk, A.O., So, W.Y., Ma, R.C. (2008). Metabolic syndrome predicts new onset of chronic kidney disease in 5,829 patients with Type 2 diabetes: a 5-year prospective analysis of the Hong Kong Diabetes Registry. Diabetes Care, 31, 2357–2361.CrossRefGoogle Scholar
  24. McCulloch, R.E. (1989). Local model influence. Journal of the American Statistical Association, 84, 473–478.CrossRefGoogle Scholar
  25. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21, 1087–1092.CrossRefGoogle Scholar
  26. Millar, R.B., & Stewart, W.S. (2007). Assessment of locally influential observations in Bayesian models. Bayesian Analysis, 2, 365–384.MathSciNetCrossRefGoogle Scholar
  27. Pan, D., He, H.J., Song, X.Y., Sun, L.Q. (2015). Regression analysis of additive hazards model with latent variables. Journal of the American Statistical Association, 110, 1148–1159.MathSciNetCrossRefGoogle Scholar
  28. Pan, J.X., & Fang, K.T. (2002). Growth curve models and statistical diagnostics. Berlin: Springer.CrossRefGoogle Scholar
  29. Pan, W., & Louis, T.A. (2000). A linear mixed-effects model for multivariate censored data. Biometrics, 56, 160–166.CrossRefGoogle Scholar
  30. Prentice, R.L., & Cai, J. (1992). Covariance and survivor function estimation using censored multivariate failure time data. Biometrika, 79, 495–512.MathSciNetCrossRefGoogle Scholar
  31. Roy, J., & Lin, X. (2000). Latent variable models for longitudinal data with multiple continuous outcomes. Biometrics, 56, 1047–1054.MathSciNetCrossRefGoogle Scholar
  32. Roy, J., & Lin, X. (2002). Analysis of multivariate longitudinal outcomes with nonignorable dropouts and missing covariates: changes in methadone treatment practices. Journal of the American Statistical Association, 97, 40–52.MathSciNetCrossRefGoogle Scholar
  33. Sammel, M.D., & Ryan, L.M. (1996). Latent variable models with fixed effects. Biometrics, 52, 650–663.MathSciNetCrossRefGoogle Scholar
  34. Song, X.Y., & Lee, S.Y. (2004a). Local influence of two-level latent variable models with continuous and polytomous data. Statistica Sinica, 14, 317–332.Google Scholar
  35. Song, X.Y., & Lee, S.Y. (2004b). Local influence analysis for mixture of structural equation models. Journal of Classification, 21, 111–137.Google Scholar
  36. Song, X.Y., & Lee, S.Y. (2012). Basic and advanced bayesian structural equation modeling: with applications in the medical and behavioral sciences. New York: Wiley.CrossRefGoogle Scholar
  37. Song, X.Y., & Lu, Z.H. (2012). Semiparametric transformation models with Bayesian P-splines. Statistics and Computing, 22, 1085–1098.MathSciNetCrossRefGoogle Scholar
  38. Song, X.Y., Pan, D., Liu, P.F., Liu, P.F., Cai, J.H. (2016). Bayesian analysis of transformation latent variable models with multivariate censored data. Statistical Methods in Medical Research, 25, 2337–2358.MathSciNetCrossRefGoogle Scholar
  39. Tang, N.S., & Duan, X.D. (2014). Bayesian influence analysis of generalized partial linear mixed models for longitudinal data. Journal of Multivariate Analysis, 126, 86–99.MathSciNetCrossRefGoogle Scholar
  40. Thomas, W., & Cook, R.D. (1989). Assessing influence on regressing coefficients in generalized linear models. Biometrika, 76, 741–749.MathSciNetCrossRefGoogle Scholar
  41. van der Linde, A. (2007). Local influence on posterior distributions under multiplicative modes of perturbation. Bayesian Analysis, 2, 319–332.MathSciNetCrossRefGoogle Scholar
  42. Yu, Z., & Lin, X. (2008). Nonparametric regression using local kernel estimating equations for correlated failure time data. Biometrika, 95, 123–137.MathSciNetCrossRefGoogle Scholar
  43. Zhu, H.T., & Lee, S.Y. (2001). Local influence for incomplete-data models. Journal of the Royal Statistical Society. Series B, 61, 111–126.MathSciNetCrossRefGoogle Scholar
  44. Zhu, H.T., Ibrahim, J.G., Tang, N.S. (2011). Bayesian influence analysis: a geometric approach. Biometrika, 98, 307–323.MathSciNetCrossRefGoogle Scholar
  45. Zhu, H.T., & Ibrahim, J.G. (2007). Lee, S. Y. and Zhang, H.P Perturbation selection and influence measures in local influence analysis. The Annals of Statistics, 35, 2565–2588.MathSciNetCrossRefGoogle Scholar
  46. Zhu, H.T., Ibrahim, J.G., Cho, H., Tang, N.S. (2012). Bayesian case influence measures for statistical models with missing data. Journal of Computational and Graphical Statistics, 21, 253–271.MathSciNetCrossRefGoogle Scholar

Copyright information

© The Classification Society 2019

Authors and Affiliations

  1. 1.Shenzhen Research Institute & Department of StatisticsChinese University of Hong KongShatinHong Kong

Personalised recommendations