Advertisement

Journal of Classification

, Volume 36, Issue 2, pp 266–276 | Cite as

On the Logistic Behaviour of the Topological Ultrametricity of Data

  • Patrick Erik BradleyEmail author
Article
  • 45 Downloads

Abstract

Recently, it has been observed that topological ultrametricity of data can be expressed as an integral over a function which describes local ultrametricity. It was then observed empirically that this function begins as a sharply decreasing function, in order to increase again back to one. After providing a method for estimating the falling part of the local ultrametricity of data, empirical evidence is given for its logistic behaviour in relation to the number of connected components of the Vietoris-Rips graphs involved. The result is a functional dependence between that number and the number of maximal cliques. Further, it turns out that the logistic parameters depend linearly on the datasize. These observations are interpreted in terms of the Erdős-Rényi model for random graphs. Thus the findings allow to define a percolationbased index for almost ultrametricity which can be estimated in O(N2 logN) time which is more efficient than most ultrametricity indices.

Keywords

Ultrametricty Random graphs Percolation Topological data analysis Logistic function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AVETISOV, V., KRAPIVSKY, P.L, and NECHAEV, S. (2016), “Native Ultrametricity of Sparse Random Ensembles”, Journal of Physics A: Mathematical and Theoretical, 49(3), 035101.MathSciNetCrossRefGoogle Scholar
  2. BENZECRI, J.P. (1980), L’Analyse des Données: La Taxinomie (Vol. 1, 3rd ed.), Paris: Denod.zbMATHGoogle Scholar
  3. BRADLEY, P.E. (2008), “Degenerating Families of Dendrograms”, Journal of Classification, 25(1), 27–42.MathSciNetCrossRefGoogle Scholar
  4. BRADLEY, P.E. (2009), “On p-adic Classification”, p-Adic Numbers, Ultrametric Analysis, and Applications, 1(4), 271–285.MathSciNetCrossRefGoogle Scholar
  5. BRADLEY, P.E. (2010), “Mumford Dendrograms”, The Computer Journal, 53(4), 393– 404.CrossRefGoogle Scholar
  6. BRADLEY, P.E. (2016), “Ultrametricity Indices for the Euclidean and Boolean Hypercubes”, p-Adic Numbers, Ultrametric Analysis, and Applications, 8(4), 298–311.MathSciNetCrossRefGoogle Scholar
  7. BRADLEY, P.E. (2017), ”Finding Ultrametricity in Data Using Topology”, Journal of Classification, 34(1), 76–84.MathSciNetCrossRefGoogle Scholar
  8. BRADLEY, P.E., and BRAUN, A.C. (2015), “Finding the Asymptotically Optimal Baire Distance for Multi-Channel Data”, Applied Mathematics, 6(3), 484–495.CrossRefGoogle Scholar
  9. CARLSSON, G. (2009), “Topology and Data”, Bulletin of the AMS, 46(2), 255–308.MathSciNetCrossRefGoogle Scholar
  10. ERDŐS, P., and RÉ NYI, A. (1960), “On the Evolution of Random Graphs”, Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5, 17–61.MathSciNetGoogle Scholar
  11. EVETT, I.W., and SPIEHLER, E.J. (1987), “Rule Induction in Forensic Science”, in Central Research Establishment, Home Office Forensic Science Service, pp. 107–118.Google Scholar
  12. FISHER, R.A. (1936), “The Use of Multiple Measurements in Taxonomic Problems”, Annals of Eugenics, 7, 179–188.CrossRefGoogle Scholar
  13. HORTON, P., and NAKAI, K. (1996), “A Probablistic Classification System for Predicting the Cellular Localization Sites of Proteins”, in Proceedings of the Fourth International Conference on Intelligent Systems in Molecular Biology, pp. 109–115.Google Scholar
  14. JANSON, S., KNUTH, D.E., ŁUCZAK, T., and PITTEL, B. (1993), “The Birth of the Giant Component”, Random Structures and Algorithms, 4(3), 233–358.MathSciNetCrossRefGoogle Scholar
  15. LICHMAN, M. (2013), “UCI Machine Learning Repository”, http://archive.ics.uci.edu/ml, University of California, Irvine, School of Information and Computer Sciences.
  16. MURTAGH, F. (2009), “The Remarkable Simplicity of Very High Dimensional Data: Application of Model-Based Clustering”, Journal of Classification, 26, 249–277.MathSciNetCrossRefGoogle Scholar
  17. MURTAGH, F. (2004), “On Ultrametricity, Data Coding, and Computation”, Journal of Classification, 21, 167–184.MathSciNetCrossRefGoogle Scholar
  18. RAMMAL, R., ANGLES D’AURIAC, J.C., and DOUCOT, B. (1985), “On the Degree of Ultrametricity”, Journal de Physique Lettres, 46, L-945–L-952.CrossRefGoogle Scholar
  19. ROUHANI-KALLEH, O. (2007), “Algorithms for Fast Large Scale Data Mining Using Logistic Regression”, in Proceedings of the IEEE Symposium on CIDM 2007, pps. 155–162.Google Scholar
  20. VIETORIS, L. (1927), “Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen”, Mathematische Annalen, 97(1), 454–472.MathSciNetCrossRefGoogle Scholar
  21. ZOMORODIAN, A. (2010), “Fast Construction of the Vietoris-Rips Complex”, Computers and Graphics, 34(3), 263–271.CrossRefGoogle Scholar
  22. ZUBAREV, A.P. (2014), “On Stochastic Generation of Ultrametrics in High-Dimensional Euclidean Spaces”, p-Adic Numbers, Ultrametric Analysis, and Applications, 6(2), 155–165.MathSciNetCrossRefGoogle Scholar

Copyright information

© Classification Society of North America 2018

Authors and Affiliations

  1. 1.Karlsruhe Institute of Technology (KIT)Institut of Photogrammetry and Remote SensingKarlsruheGermany

Personalised recommendations